DOI QR코드

DOI QR Code

Synthesis of TiO2-Fe2O3 Nanocomposite Powders for Magnetic Photocatalyst

자성광촉매용 TiO2-Fe2O3 나노복합분말의 합성

  • Lee Chang-Woo (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Kim Soon-Gil (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Yun Sung-Hee (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Lee Jai-Sung (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Choa Yong-Ho (Department of Chemical engineering, hanyang University)
  • 이창우 (한양대학교 공학대학 금속재료공학과) ;
  • 김순길 (한양대학교 공학대학 금속재료공학과) ;
  • 윤성희 (한양대학교 공학대학 금속재료공학과) ;
  • 이재성 (한양대학교 공학대학 금속재료공학과) ;
  • 좌용호 (한양대학교 공과대학 화학공학과)
  • Published : 2005.08.01

Abstract

[ $TiO_2-Fe_2O_3$ ] nanocomposite powders for magnetic photocatalyst were synthesized by sol-gel process, in which $TiO_2$ photocatalytic layer was formed on the surface of $\gamma-Fe_2O_3$ magnetic core. Transmission electron microscopy (TEM) observation and X-ray diffractometry (XRD) analysis revealed that$\gamma-Fe_2O_3$ nanoparticles, $10\~20nm$ in diameter, were coated by $TiO_2$ shell of 5nm in thickness and $TiO_2$ was anatase phase. Also hydroxyl group (-OH) used to decompose organic compounds was detected by Fourier transformation infrared spectrometry(FT-IR) analysis. UV-Visible spectrophotometry results showed that light absorption occurred in the wavelength range of $400\~700 nm$, and the band gap energy $(E_g)$ of powder was 1.8 eV. Finally it was found that the coercivity $(H({ci})$ and saturation magnetization $(M_s)$ of the powder were 79 Oe and 14.8 emu/g, respectively as experimental vibrating sample magnetometer (VSM) measurements.

Keywords

References

  1. M. R. Hoffmann, S. T. Martin and D. W. Bahnemann, Chem. Rev., 95(3), 735 (1995) https://doi.org/10.1021/cr00035a013
  2. S. H. Yoo, Technology and Patent Trend in Photocatalysts, KISTI Report, BW110 (1999)
  3. D. Baydoun, R. Amal, G. Low, and S. McEvoy, in Proceedings of the The Third World Congress on Particle Technology (Brightion, UK 6-9 July 1998) p. 201
  4. D. Baydoun, R. Amal, G. Low, and S. McEvoy, J. Phys. Chem. B, 104(18), 4387 (2000) https://doi.org/10.1021/jp992088c
  5. D. Baydoun, R. Amal, G. Low, and S. McEvoy, J. Mol. Catal. A: Chem., 180(1/2), 193 (2002) https://doi.org/10.1016/S1381-1169(01)00429-0
  6. S. Watson, D. Baydoun, and R. Amal, J. Photochem. Photobiol. A: Chem., 148(1/3), 303 (2002) https://doi.org/10.1016/S1010-6030(02)00057-6
  7. D. Baydoun and R. Amal, Mater. Sci. Eng. B, 94(1), 71 (2002) https://doi.org/10.1016/S0921-5107(02)00085-5
  8. R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Proprties, Reactions, Occurrence and Uses, VCH Publishers, New York, NY (1996)
  9. S. Seino, T. Kinoshita, Y. Otome, T. Nakagawa, K. Okitsu, Y. Mizukoshi, T. Nakayama, T. Sekino, K. Niihara, and T. A. Yamamoto, J. Mago. Magn. Mater., 293(1) 144 (2005) https://doi.org/10.1016/j.jmmm.2005.01.054
  10. Y. Gao, B. Chen, H. Li, and Y. Ma, Mater. Chem. Phys., 80(1), 348 (2003) https://doi.org/10.1016/S0254-0584(02)00515-1
  11. X. K. Zhao, J. H. Fendler, J. Phys. Chem., 95, 3716 (1991) https://doi.org/10.1021/j100162a051
  12. I. B. Lucy, J. Beydoun, D. N. Waters, J. Mater, Sci. Lett., 14, 515 (1995)
  13. L. J. Meng, M. P. Dos Santos, Thin Solid Films, 226, 22 (1993) https://doi.org/10.1016/0040-6090(93)90200-9
  14. J. Aarik, A. Aidla, A. A. Kiisller, T. Uustare, and V. Sammelselg, Thin Solid Films, 305, 270 (1997) https://doi.org/10.1016/S0040-6090(97)00135-1
  15. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction (3rd Ed.), Prentice Hall, New Jersey (2001)
  16. M. Lindler, J. Theurich, and D. W. Bahnemann, Water Sci. Technol., 35(4), 79 (1997) https://doi.org/10.1016/S0273-1223(97)00012-7
  17. D. Chen and A. K. Ray, Water Res., 32(11), 3223 (1998) https://doi.org/10.1016/S0043-1354(98)00118-3
  18. J. F. Porter, Y, -G. Li and C. K. Chan, J. Mater. Sci., 34, 1523 (1999) https://doi.org/10.1023/A:1004560129347
  19. H. Tang, K. Prasad, R. Sanjunes, P. E. Schmid, and F. Levy, J. Appl. Phys., 75(4), 2042 (1994) https://doi.org/10.1063/1.356306
  20. N. Daude, C. Gout and C. Jouanin, Phys. Rev. B, 15, 3229 (1977) https://doi.org/10.1103/PhysRevB.15.3229
  21. M. I. Litter, J. A. Navio., J. Photochem. Photobiol. A, 84,183 (1994) https://doi.org/10.1016/1010-6030(94)03858-9
  22. C. Pulgarin, J. Kiwi, Langmuir, 11, 519 (1995) https://doi.org/10.1021/la00002a026
  23. I. Bedja, P. V. Kamat, The J. Phys. Chem., 99, 9182 (1995) https://doi.org/10.1021/j100022a035
  24. A. Henglein, Berichte der Bunsen-Gesellschaft-Phys. Chem., 101, 1562 (1997) https://doi.org/10.1002/bbpc.19971011103
  25. J. E. Evans, K. W. Springer, J. H. Zhang, The J. Chem. Phys., 101, 6222 (1994) https://doi.org/10.1063/1.468376
  26. J. A. Byrne, B. R. Eggins. N. M. D. Brown, B. McKinney, and M. Rose, Appl. Catal. B: Environmental, 17(1/2), 25 (1998) https://doi.org/10.1016/S0926-3373(97)00101-X
  27. D. Xingzhao and L. Xianghuai, Mater. Sci. Eng. A, 224(1/2), 210 (1997) https://doi.org/10.1016/S0921-5093(96)10541-4
  28. M. R. Hoffmann, S. T. Martin and D. W. Bahnemann, Chem. Rev., 95(3), 735 (1995) https://doi.org/10.1021/cr00035a013
  29. P. A. Gonnor, K. D. Dobson and A. J. McQuillsn, Langmuir, 15, 2402 (1999) https://doi.org/10.1021/la980855d