DOI QR코드

DOI QR Code

Comparison of Nitrogen and Oxygen Annealing Effects on the Structural, Optical and Electrical Properties of ALD-ZnO Thin Films

ALD법으로 증착한 ZnO 박막의 열처리 분위기에 따른 구조적, 전기적 특성 비교

  • Park Y. K. (Dept. of Advanced Materials Sci. & Eng.,) ;
  • Park A. N. (Dept. of Advanced Materials Sci. & Eng.,) ;
  • Lee C. M. (Dept. of Advanced Materials Sci. & Eng.,)
  • 박연규 (인하대학교 신소재공학부) ;
  • 박안나 (인하대학교 신소재공학부) ;
  • 이종무 (인하대학교 신소재공학부)
  • Published : 2005.08.01

Abstract

Effects of nitrogen and oxygen annealing on the carrier concentration, carrier mobility, electrical resistivity and PL characteristics as well as the crystallinity of ZnO films deposited on sapphire substrates by atomic layer deposition (ALD). X-ray diffraction (XRD), Scanning electron microscope (SEM), photoluminescence (PL) analyses, and Hall measurement were performed to investigate the crystallinity, optical properties and electrical properties of the ZnO thin films, respectively. According to the XRD analysis results the crystallinity of the ZnO film annealed in an oxygen atmosphere is better than that of the ZnO film annealed in a nitrogen atmosphere. Annealing undoped ZnO films grown by ALD at a high temperature above $600^{\circ}C$ improves the crystallinity and enhances W emission but deteriorates the electrical conductivity of the flms. The resistivity of the ZnO film annealed particularly at $800^[\circ}C$ in a nitrogen atmosphere is much higher than that annealed at the same temperature in an oxygen atmosphere.

Keywords

References

  1. X. L. Xu, S. P. Lau and B. K. Tay, Thin Solid Films, 244, 398 (2001)
  2. D. C. Look and B. Claflin, Phys. Stat. Sol. (b), 624, 241 (2004)
  3. J. M. Lim, K. C. Shin, H. W. Kim and C. M. Lee, Mat. Sci. & Eng. B, 107, 301 (2004) https://doi.org/10.1016/j.mseb.2003.12.006
  4. J. M. Lim, K. C. Shin and C. M. Lee, J. Mat. Sci., 39, 3195 (2004) https://doi.org/10.1023/B:JMSC.0000025857.63690.67
  5. K. Ogata, K. Sakurai, Sz. Fujita, Sg. Fufita and K. Matsushige, J. Crystal growth, 214/215, 312 (2000) https://doi.org/10.1016/S0022-0248(00)00099-3
  6. S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im, Optical Materials, 17, 327 (2001) https://doi.org/10.1016/S0925-3467(01)00054-4
  7. J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi and Y, Zheng, J. Cryst. Growth, 243, 151 (2002) https://doi.org/10.1016/S0022-0248(02)01474-4
  8. W. G. Han, S. G. Kang, T. W. Kim, D. W. Kim and W. J. Cho, Appl. Surf. Sci., 245, 384 (2005) https://doi.org/10.1016/j.apsusc.2004.10.033
  9. C. K. Lau, S. K. Tiku and K. M. Lakin, J. Electrochem. Soc., 127, 1843 (1980) https://doi.org/10.1149/1.2130012
  10. S. Liaug, C. R. Gorla, N. Emanetoglu, Y. Liu, W. E. Mayo and Y. Lu, J. Electron. Matter, 27, L72 (1998) https://doi.org/10.1007/s11664-998-0083-6
  11. P. Poppl and G. Volkel, phys. Stat. Sol. (a), 125, 571 (1991) https://doi.org/10.1002/pssa.2211250218
  12. V. Lujala, J. Skarp, M. Tammenmaa and T. Suntola, Appl. Surf. Sci., 82/83, 34 (1994) https://doi.org/10.1016/0169-4332(94)90192-9