DOI QR코드

DOI QR Code

Blood Compatibility of Hollow Fiber Membranes Treated with Plasma Polymerization

플라즈마 중합 처리된 중공사 막의 혈액 적합성

  • Kwon O. S. (School of Advanced Materials Eng., Chonbuk Nat. Univ.) ;
  • Lee S. C. (Dept. of Advanced Materials Eng., Hanlyo University)
  • 권오성 (전북대학교 신소재공학부) ;
  • 이삼철 (한려대학교 신소재공학과)
  • Published : 2005.08.01

Abstract

Surface modification of polypropylene hollow fiber membranes was peformed in order to develop blood-compatible biomaterials for use in the blood contacting and oxygenation membranes of a lung-assist device(LAD). Blood compatibility was determined by using anticoagulation blood and evaluating formation of blood clots on their surfaces as well as activation of plasma coagulation cascade, platelet adhesion, and aggregation. It was verified that the number of platelets on the silicone coated fibers was significantly lower than those on polypropylene. It was also found that the polypropylene hollow fiber membranes using plasma treatment exhibited suppression of complement activation in blood compatibility test.

Keywords

References

  1. B. G. Hattler, P. C. Jhonson, P. J. Sawzik, F. D. Saffer, M. Klain, L. W. Lund, G. D. Reeder, F. R. Walters, J. S. Goode and H. S. Borovetz, ASAIO J., 38, M322 (1992) https://doi.org/10.1097/00002480-199207000-00046
  2. B. G. Garber, Critical Care Medicine, 24(4), 687 (1996) https://doi.org/10.1097/00003246-199604000-00023
  3. S. A. Conrad, J. M. Eggerstedt, V. F. Morris and M. D. Romero, Chest, 107(6), 1689 (1995) https://doi.org/10.1378/chest.107.6.1689
  4. T. P. Hooker, P. Thomas, M. D. Hammond and S. Allen, J. Am. Osteopathic Assoc., 92(7), 886 (1992)
  5. H. J. Eash, H. M. Jones, B. G. Hattler and W. J. Federspiel, ASAIO J., 50, 491 (2004) https://doi.org/10.1097/01.MAT.0000138078.04558.FE
  6. A. K. Zimmermann, H. Aebert, M. Freitag, M. Husseini, G. Ziemer and H. P. Wendel, ASAIO J., 50, 193 (2004) https://doi.org/10.1097/01.MAT.0000123638.41808.59
  7. D. Wang, S. K. Alpard, C. Savage, H. N. Yamani, D. J. Deyo, S. Nemser and J. B. Zwischenberger, ASAIO J., 49, 673 (2003) https://doi.org/10.1097/01.MAT.0000093967.27012.5A
  8. J. D. Mortensen, Trans. Am. Soc. Artif. Int. Org., 33, 570 (1987)
  9. B. Bagley, A. Bagley, J. Henrie, C. Froerer, J. Brohamer, J. Burkart and J. D. Mortensen, ASAIO Transactions, 37, M413 (1991)
  10. J. D. Mortensen, U. S. Patent, 4, 583, 969, April (1986)
  11. B. G. Hattler, G. D. Reeder, P. J. Sawzik, L. W. Lund, F. R. Walters, A. S. Shah, J. Rawleigh, J. S. Goode, M. Klain and H. Borovetz, Artif. Organs, 18(11), 806 (1994) https://doi.org/10.1111/j.1525-1594.1994.tb03327.x
  12. Y. Imai, Y. Nose, J. Biomed. Mater. Res., 6, 165 (1972) https://doi.org/10.1002/jbm.820060305
  13. R. I. Lee and P.D. White, J. Am. Med. Sci., 145, 495 (1913) https://doi.org/10.1097/00000441-191304000-00004
  14. D. K. Han, S. Y. Jeong, Y. H. Kim, B. G. Min and H. I. Cho, J. Biomed. Mater. Res., 25, 561 (1991) https://doi.org/10.1002/jbm.820250502
  15. Y. Ito and Y. Imanishi, CRC Critical Reviews in Biocompatibility, 5, 45 (1989)
  16. Y. Ito, K Iwata, I. K. Hang, M. Sisido and Y. Imanishi, Int. T. Biol. Macromol, 10, 169 (1988) https://doi.org/10.1016/0141-8130(88)90044-X