DOI QR코드

DOI QR Code

Electroluminescent Properties of White Light-Emitting Device Using Photoconductive Polymer and Anthracene Derivatives

광전도성 고분자와 안트라센 유도체를 이용한 백색 전계발광소자의 발광 특성

  • Lee Jeong-Hwan (Department of Polymer Engineering, Pukyong National University) ;
  • Choi Hee-Lack (Department of Materials Science and Engineering, Pukyong National University) ;
  • Lee Bong (Department of Polymer Engineering, Pukyong National University)
  • 이정환 (부경대학교 고분자공학과) ;
  • 최희락 (부경대학교 신소재공학과) ;
  • 이봉 (부경대학교 고분자공학과)
  • Published : 2005.08.01

Abstract

Organic electroluminescence devices were made from 1,4-bis-(9-anthrylvinyl)benzene (AVB) and 1,4-bis-(9-aminoanthryl)benzene (AAB) anthracene derivatives. Device structure was ITO/AVB/PANI(EB)/Al (multi-layer device) and ITO/AAB:DCM/Al(single-layer device). In these devices, AVB, polyaniline(emeraldine base) (PANI(EB)) and AAB were used as the emitting material. 4-(dicyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H -pyran(DCM) was used as red fluorescent dopant. We studied change of fluorescence wavelength with concentration of DCM doped in AAB. The ionization potential (IP) and optical band gap (Eg) were measured by cyclic voltammetry and UV-visible spectrum. We compared with difference of emitting wavelength between photoluminescence and electroluminescence spectrum. In case of the multi-layer device, PANI and AVB EL spectra have similar wave pattern to each PL spectrum and when PAM and AVB were used at the same time, and multi-layer device showed that a balanced recombination and radiation kom PANI and AVB. In case of the single-layer device, with the increase of DCM concentration, the blue emission decreases and red emission increases. This indicates that DCM was excited by the energy transfer from AAB to DCM or the direct recombination at the dopant sites due to carrier trapping, or both. The device with $1.0wt\%$ DCM concentration gave white light.

Keywords

References

  1. Tang, C. W. and VanSlyke and S. A. Organic electroluminescent diodes. Appl. Phys. Lett., 51, 913 (1987) https://doi.org/10.1063/1.98799
  2. Kido, J. Recent Advance in organic Electroluminescence Device. Bulletin of Electrochemistry, 10, 1 (1994)
  3. Tang. C. W, VanSlyke, S. A. and Chen, C. H. Electroluminescent of doped organic thin films. J. Appl. Phys, 65, 3610 (1989) https://doi.org/10.1063/1.343409
  4. S. Romdlhane, F. Marai, L. Hassine, J. L. Fave, J. Roussel, M. Majdoub and H. Bouchriha, Synth. Met, 139, 245 (2003) https://doi.org/10.1016/S0379-6779(03)00128-0
  5. M. G. Roc, J. M. Ginder, P. E. Wigen, A. J. Epstein, M. Angelopoulos and A. G. MacDiarmid, Phys. Rev. Lett, 6, 789 (1988)
  6. R. H. Friend, D. D. C. Bradley and P. D. Townsend, J. Phys., D20, 1367 (1987)
  7. D. D. C.Bradley and R. H. Friend, J. Phys. Condensed Matter, 1, 3671 (1989) https://doi.org/10.1088/0953-8984/1/23/011
  8. P. E. Burrows, S. R. Forrest, S. P. Sibley and M. E. Thompson, Appl. Phys. Lett., 69, 2959 (1996) https://doi.org/10.1063/1.117743
  9. Y. Hamada, IEEE Trans. Eletron Devices., 44, 1209 (1997)
  10. C. H. Chen, J. Shi and C. W. Tang, Macromol. Symp., 125, 1 (1997)
  11. Z. Y. Xie, L. S. Hung and S. T. Lee, Appl. Phys. Lett., 79, 1048 (2001) https://doi.org/10.1063/1.1390479
  12. X. H. Zhang, B. J. Chen, X. Q. Lin, O. Y. Wong, C. S. Lee, H. L. Kwong, S. T. Lee and S. K. Wu, Chem. Mater., 13, 1565 (2001) https://doi.org/10.1021/cm0008664
  13. B. -J. Jun, C. -B, Yoon, H. -K. Shim, L. -M. Do and T. Zyung, Adv. Funct. Mater., 11, 430 (2001) https://doi.org/10.1002/1616-3028(200112)11:6<430::AID-ADFM430>3.0.CO;2-G
  14. Y. S. Park, H. L. Choi and B. Lee, Kor. J Imaging Sci. and Tech., 10(4), 32 (2004)
  15. M. Kawamoto, H. Mochizuki, A. Shishido, O. Tsutsumi, T. Ikeda, B. Lee and Y. Shirota, J. Phys. Chem. B., 107, 4887 (2003) https://doi.org/10.1021/jp0215872
  16. M. Kawamoto, H. Mochizuki, T. Ikeda, B. Lee and Y. Shirota, J. Appl. Phys., 94, 6442 (2003) https://doi.org/10.1063/1.1621726