DOI QR코드

DOI QR Code

An ab Initio Study of Interfacial Energies between Group IV Transition Metal Carbides and bcc Iron

IV 천이금속 탄화물과 bcc Fe간 계면 에너지의 제일원리 연구

  • Chung Soon-Hyo (Materials Science & Technology Division, Korea Institute of Science & Technology) ;
  • Jung Woo-Sang (Materials Science & Technology Division, Korea Institute of Science & Technology) ;
  • Byun Ji-Young (Materials Science & Technology Division, Korea Institute of Science & Technology)
  • 정순효 (한국과학기술연구원 재료연구부) ;
  • 정우상 (한국과학기술연구원 재료연구부) ;
  • 변지영 (한국과학기술연구원 재료연구부)
  • Published : 2005.09.01

Abstract

This paper describes an ab Initio study on interface energies, misfit strain energies, and electron structures at coherent interfaces Fe(bcc structure)/MCs(NaCl structure M=Ti, Zr, Hf). The interface energies at relaxed interfaces Fe/TiC, Fe/ZrC and Fe/HfC were 0.263, 0.153 and $0.271 J/m^2$, respectively. It was understood that the dependence of interface energy on the type of carbide was closely related to changes of the binding energies between Fe, M and C atoms before and after formation of the interfaces Fe/MCs with the help of the DLP/NNBB (Discrete Lattice Plane/ Nearest Neighbour Broken Bond) model and data of the electron structures. The misfit strain energies in Fe/TiC, Fe/ZrC and Fe/HfC systems were 0.390, 1.692 and 1.408 eV per 16 atoms(Fe: 8 atoms and MC; 8 atoms). More misfit energy was generated as difference of lattice parameters between the bulk Fe and the bulk MCs increased.

Keywords

References

  1. D. A. Porter and K. E. Easterling, Phase Transformation in Metals and Alloys, 2nd Ed. Chapman & Hall, London, UK, (1992)
  2. J. D. Robson and H. K. D. H. Bhadeshia, Calphad, 20, 447 (1996) https://doi.org/10.1016/S0364-5916(97)00007-2
  3. N. Fujita and H. K. D. H. Bhadeshia, Mater. Sci. Technol., 17, 403 (2001) https://doi.org/10.1179/026708301101510122
  4. N. Fujita and H. K. D. H. Bhadeshia, ISIJ Inter., 42, 760 (2002) https://doi.org/10.2355/isijinternational.42.760
  5. N. Fujita, H. K. D. H. Bhadeshia and M. Kikuchi, Modelling Simul. Mater. Sci. Eng., 12, 273 (2004) https://doi.org/10.1088/0965-0393/12/2/008
  6. J. Hald and L. Korcakova, ISIJ Inter., 43, 420 (2003) https://doi.org/10.2355/isijinternational.43.420
  7. Z.-G. Yang and M. Enomoto, Mater. Sci. Eng., A332, 184 (2002) https://doi.org/10.1016/S0921-5093(01)01729-4
  8. F. R. de Boer, R. Boom, W. C. M, Mattens, A. R. Miedema and A. K. Niessen, Cohesion in Metals; Transition Metal Alloys, North-Holland, Amsterdam, (1988)
  9. J. Hartford, Phys. Rev. B, 61, 2221 (2000) https://doi.org/10.1103/PhysRevB.61.2221
  10. S. V. Dudiy and B. I. Lundqvist, Phys. Rev. B, 64, 045403 (2001) https://doi.org/10.1103/PhysRevB.64.045403
  11. M. Christensen, S. Dudiy and G. Wahnstroem, Phys. Rev. B, 65, 045408 (2002) https://doi.org/10.1103/PhysRevB.65.045408
  12. D. J. Siegel, L. G. Hector and J. B. Adams, Phys. Rev. B, 67, 092105 (2003) https://doi.org/10.1103/PhysRevB.67.092105
  13. S. V. Dudiy and B. I. Lundqvist, Phys. Rev. B, 69, 125421 (2004) https://doi.org/10.1103/PhysRevB.69.125421
  14. J. P. Perdew, Electronic Structure of Solids, eds. P. Ziesche and H. Eschrig, Akademie Verlag, Berlin, (1991)
  15. K. Laasonen, A. Pasquarello, R. Car, C. Lee and D. Vanderbilt, Phys. Rev. B, 47, 10142 (1993) https://doi.org/10.1103/PhysRevB.47.10142
  16. R. Benedeck, D. N. Seidman and C. Woodward, J. Phys. Condens. Matter, 14, 2877 (2002) https://doi.org/10.1088/0953-8984/14/11/307
  17. V. Fiorentini and M. Methfessel, J. Phys. Condens. Matter, 8, 6525 (1996) https://doi.org/10.1088/0953-8984/8/36/005
  18. Smithells Metals Reference Book, eds. W. F. Gale and T. C. Totemeier, Elsevier, Amsterdam, (2004)
  19. A. Zaoui, B. Bouhofs and P. Ruterang, Mater. Chem. Phys., 91, 108 (2005) https://doi.org/10.1016/j.matchemphys.2004.10.056
  20. A. Arya and E. A. Carter, J. Chem. Phys., 118, 8982 (2003) https://doi.org/10.1063/1.1565323
  21. S. V. Dudiy, Surf. Sci., 497, 171 (2002) https://doi.org/10.1016/S0039-6028(01)01643-0
  22. L. M. Liu, S. Q. Wang and H. Q. Ye, J. Phys. Condens, Matter, 15, 8103 (2003) https://doi.org/10.1088/0953-8984/15/47/013
  23. L. M. Liu, S. Q. Wang and H. Q. Ye, Surf. Sci., 550, 46 (2004) https://doi.org/10.1016/j.susc.2003.12.031
  24. K. Kobayashi, Surf. Sci., 493, 665 (2001) https://doi.org/10.1016/S0039-6028(01)01280-8
  25. M. Tagawa, T. Kawasaki, C. Oshima, S. Otani, K. Edamoto and A. Nagashima, Surf. Sci., 517, 59 (2002) https://doi.org/10.1016/S0039-6028(02)01913-1
  26. A. Arya and E. A. Carter, Surf. Sci., 560, 103 (2004) https://doi.org/10.1016/j.susc.2004.04.022
  27. G. R. Gruzalski, D. M. Zehner, S. R. Noonan, H. L. Davis, R. A. Didio and K. Mueller, J. Vac. Sci. Technol., A7, 2054 (1989) https://doi.org/10.1116/1.575969
  28. J. Haeglund, A. Fernandez Guillermet, G. Grimvall and M. Koerling, Phys. Rev. B, 48, 11685 (1993) https://doi.org/10.1103/PhysRevB.48.11685