DOI QR코드

DOI QR Code

Microstructure and Corrosion Behavior of Various Grain Size Cp-Ti

입자크기를 달리한 Cp-Ti의 미세구조 관찰 및 SBF하에서의 부식거동

  • Lee Seung-Woo (Department of Materials Engineering, Graduate School of Paichai University) ;
  • Kim Yun-Jong (Department of Materials Engineering, Graduate School of Paichai University) ;
  • Ruy Jae-Gyeoung (Department of Materials Engineering, Graduate School of Paichai University) ;
  • Park Joong-Keun (Department of Materials Science & Engineering, KAIST) ;
  • Kim Won-Soo (Dept. of Dental Laboratory Technology, Daejeon Health Science College) ;
  • Kim Taik-Nam (Department of Materials Engineering, Graduate School of Paichai University)
  • 이승우 (배재대학교 재료공학과) ;
  • 김윤종 (배재대학교 재료공학과) ;
  • 류재경 (배재대학교 재료공학과) ;
  • 박중근 (한국과학기술원 재료공학과) ;
  • 김원수 (대전보건대학 차기공과) ;
  • 김택남 (배재대학교 재료공학과)
  • Published : 2005.09.01

Abstract

Titanium and Titanium alloys are widely used as an orthopedic and dental implant material because of their excellent biocompatibility and mechanical strength. In this study, ECAP Cp-Ti and Cp-Ti were heat treated for different annealing time of 30 min, 90 min and 3 hours. The grain size for each condition was studied. The micro-Vicker hardness test was carried out f3r each different heat treated samples. The micro-Vicker hardness test for ECAP Cp-Ti, Cp-Ti and Cp-Ti (3hr) revealed hardness values of 239.5, 182 and 144 Hv, respectively. The grain size was increased from approximately $70{\mu}m\;to\;300{\mu}m$ with the increase in heat treatment time from 30 min to 3 hours. The heat treated samples were tested for their biocompatibility in simulated body fluid (SBF) and corrosion rates was determined using Polarization Curve test (PCT). The PCT results showed Cp-Ti with comparatively high corrosion potential of -0.18 V and corresponding corrosion current of $2\times10^{-6}$ A, while the corrosion rate in ECAP Cp-Ti and Cp-Ti (30 min annealed) showed very similar results of corrosion potential about -0.47 V with corresponding corrosion current of $7\times10^{-8}$ A.

Keywords

References

  1. H. M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, John Wiley & Sons, Inc., 38, 121 (1997)
  2. J. Ma, H. Wong, L. B. Kong and K. W. Peng, Nanotechnology, 14, 619 (2003) https://doi.org/10.1088/0957-4484/14/6/310
  3. A. V. Sergueeeva, V. V. Stolyarov, R. Z. Valiev, A. K. Mukherjee, Scripta Materialia, 45, 747 (2001) https://doi.org/10.1016/S1359-6462(01)01089-2
  4. M. C. Garcia-Alonso, L. Saldama, G. Valles, J. L. Gonzalez-Carrasco, Biomaterials, 24, 19 (2003) https://doi.org/10.1016/S0142-9612(02)00237-5
  5. M. F. Lopez, A. Gutierrez, J. A. Jimenez, Electrochimica Acta, 46, 1359 (2002) https://doi.org/10.1016/S0013-4686(01)00860-X
  6. B. H. Lee, Y. D. Kim and K. H. Lee, Biomaterials, 24, 2257 (2003) https://doi.org/10.1016/S0142-9612(03)00034-6
  7. I. Gurappa, Materials Characterization, 49, 73 (2002) https://doi.org/10.1016/S1044-5803(02)00320-0
  8. Y. lwahashi, Z. Horita, M. Nemoto, G. Langdon, Acta Mater., 46(9), 3317 (1998) https://doi.org/10.1016/S1359-6454(97)00494-1
  9. S. L. Semiatin, D. P. Delo, Materials & Design, 21, 311 (2000) https://doi.org/10.1016/S0261-3069(99)00085-0
  10. V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe, R. Z. Valiey, Mater. Sci. & Eng., A299, 59 (2001) https://doi.org/10.1016/S0921-5093(00)01411-8
  11. D. H. Shin, I. Kim, J. Kim, Y. S. Kim, Acta Materialia, 51, 983 (2003) https://doi.org/10.1016/S1359-6454(02)00501-3
  12. M. Kamitakahara, M. Kawashita, T. Kokubo and T. Nakamura, Biomaterials, 22, 3191 (2001) https://doi.org/10.1016/S0142-9612(01)00071-0
  13. C. Aparicio, F. J. Gil, C. Fonseca, M. Barbosa, J. A. Planell, Biomaterials, 24, 263 (2003) https://doi.org/10.1016/S0142-9612(02)00314-9