DOI QR코드

DOI QR Code

Characteristics of ZrN Films Deposited by Remote PEALD Method Using TDEAZ Precursor

원거리 플라즈마 ALD법으로 증착한 ZrN박막의 특성 연구

  • Cho Seung Chan (School of Materials Science and Engineering, Pusan National University) ;
  • Hwang Yoon Cheol (School of Materials Science and Engineering, Pusan National University) ;
  • Lee Keun Woo (Division of Materials Science & Engineering, Hanyang University) ;
  • Han Se Jin (Division of Materials Science & Engineering, Hanyang University) ;
  • Kim In Bae (School of Materials Science and Engineering, Pusan National University) ;
  • Jeon Hyeongtag (Division of Materials Science & Engineering, Hanyang University) ;
  • Kim Yangdo (School of Materials Science and Engineering, Pusan National University)
  • 조승찬 (부산대학교 재료공학부) ;
  • 황윤철 (부산대학교 재료공학부) ;
  • 이근우 (한양대학교 신소재공학부) ;
  • 한세진 (한양대학교 신소재공학부) ;
  • 김인배 (부산대학교 재료공학부) ;
  • 전형탁 (한양대학교 신소재공학부) ;
  • 김양도 (부산대학교 재료공학부)
  • Published : 2005.09.01

Abstract

The barrier characteristics of ZrN films deposited by remote plasma enhanced atomic layer deposition(PEALD) using TDEAZ and $N_2$ remote plasma have been investigated under various deposition conditions such as temperatures, plasma power and processing pressures. ZrN films showed generally improved properties as the processing temperature, pressure and plasma power increased. The optimized processing temperature, plasma power and pressure were $300^{\circ}C$, 200 Watt and 1 torr. respectively ZrN films deposited at the optimized processing conditions showed the carbon contents and resistivity of $6at.\%$ and $400{\mu}{\Omega}cm$ respectively.

Keywords

References

  1. A. S. Grove, Physics and technology of semiconductor devices, p. 40, Wiley, New York (1967)
  2. J. D. McBrayer, Diffusion of metals in silicon dioxide, DARPA, MDA 901-82-k-0412 (1983)
  3. Ivo J. Raaijmakers and A. Shennan, VMIC conference, 219 (1990) https://doi.org/10.1109/VMIC.1990.127869
  4. Semiconductor Technology Handbook, 5th edition, Technology Associates, CA (1985)
  5. M. Uekubo, T. Oku, K. Nii, M. Murakami, K. Takashiro, S. Yamaguchi, T. Nakano and T. Ohta, Thin Solid Films, 286, 170 (1996) https://doi.org/10.1016/S0040-6090(96)08553-7
  6. T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi and M. Murakami, Appl. Surf. Sci., 99, 265 (1996) https://doi.org/10.1016/0169-4332(96)00464-3
  7. M. H. Tasi, S. C. Sun, C. E. Tsai, S. H. Chuang and H. T. Chiu, J. Appl. Phys., 79, 6932 (1996) https://doi.org/10.1063/1.361518
  8. M. Ritala, M. Leskel, E. Rauhala and J. Jokinen, J. Electrochem. Soc., 145(8), 2914 (1998) https://doi.org/10.1149/1.1838736
  9. M. T. Schulberg, M. D. Allendorf and D. A. Outka, J. Vac. Sci. Technol., A 14(6), 3228 (1996) https://doi.org/10.1116/1.580218
  10. M. Boumerzong, Z. Pang, M. Boudreau and P. Masher, Appl. Phys. Lett., 66, 302 (1995) https://doi.org/10.1063/1.113525
  11. J. O. Olowolafe, C. J. Mogab, R. B. Gregort and M. Kottke, J. Appl. Phys., 72, 4099 (1992) https://doi.org/10.1063/1.352242
  12. M. A. Nicolet, and S. S. Lau, in VLSI Electronics: Microstructure Science, edited by N. Einspruch and G. Larrabee (Academic, New york, 1978)
  13. N. Toyama, Solid State Electron, 26, 37 (1983) https://doi.org/10.1016/0038-1101(83)90159-4
  14. N. Yokoyama, K. Hinode and Y. Homma, J. Electrochem. Soc., 136, 882 (1989) https://doi.org/10.1149/1.2096764
  15. M. Takeyama, A. Noya and K. Sakanishi, J. Vac. Sci. Technol., B 18, 1333 (2000) https://doi.org/10.1116/1.591382
  16. G. V. Samsonov, Sov. Phys. Tech. Phys., 1, 695 (1967)
  17. O. Kubaschewski, E. L. U. Evans and D. B. Alock, Metallurgical Thermochemistry (Pergamon, Oxford, 1967)