DOI QR코드

DOI QR Code

Effects of Al Doping Concentration on the Microstructure and Physical Properties of ZnO Thin Films Deposited by Cosputtering

Cosputtering법으로 증착한 ZnO박막의 Al도핑농도가 미세구조 및 물리적 특성에 끼치는 효과

  • Yim, Keun-Bin (Department of Materials Science and Engineering, Inha University) ;
  • Lee, Chong-Mu (Department of Materials Science and Engineering, Inha University)
  • 임근빈 (인하대학교 신소재공학부) ;
  • 이종무 (인하대학교 신소재공학부)
  • Published : 2005.09.01

Abstract

Dependence of the crystallinity, surface roughness, carrier concentration, carrier mobility, electrical resistivity and transmittance of Al-doped ZnO films deposited on glass substrates by RF-magnetron sputtering on effects of the ratio of the RF power for AlZnO to that for ZnO (R) have been investigated. X-ray diffraction spectra show strong preferred orientation along the c-axis. The full width at half maximum (FWHM) of the ZnO (002) peak decreases slightly as R increases in the range of R<1.0, whereas it increases substantially in the range of R>1.0. Scanning electron micrographs (SEM) show that the ZnO film surface becomes coarse as R increases. The carrier concentration and the carrier mobility in the ZnO thin film are maximal for R=1.5 and 1.0, respectively. The electrical resistivity is minimal for R=1.0 The transmittance of the ZnO:Al film tends to increase, but to decrease slightly in the range of R>0.5. It may be concluded that the optimum R value is 1.0, considering all these analysis results. The cause of the changes in the structure and physical properties of ZnO thin films with R are also discussed.

Keywords

References

  1. H. L. Hartnagel, A. L. Dawar, A. K. Jain and C. Jagadish, Semiconducting Transparent Thin Films, Institute of Physics Publishing, Bristol and Philadelphia, PA(1995)
  2. S. Mayer and K. L. Chopra, Sol, Ener. Mat., 17, 319 (1998) https://doi.org/10.1016/0165-1633(88)90014-7
  3. H. A. Wanka, E. Lotter and M. B. Shubert, Mat. Res. Soc. Symp. Proc., 336, 657 (1994)
  4. M. Hiramatsu, K. Imaeda, N. Horio and T. Goto, J. Vac. Sci. Technol. A, 16, 2, 669 (1998) https://doi.org/10.1116/1.581085
  5. M. Chen, Z. L. Pei, C. Sun, J. Gong, R. F. Huang and L. S. Wen, Materials Science and Engineering B, 85, 2/3, 212 (2001) https://doi.org/10.1016/S0921-5107(01)00584-0
  6. J. Hu and R. G. Gordon, J. Appl, Phys. Lett., 71, 880 (1992) https://doi.org/10.1063/1.351309
  7. X. Jiang, C. L. Jia and B. Szyszka, Appl. Phys. Lett., 80, 3090 (2002) https://doi.org/10.1063/1.1473683
  8. K. C. Park, D. Y. Ma and K. H. Kim, Thin Solid Films, 305, 201 (1997) https://doi.org/10.1016/S0040-6090(97)00215-0
  9. M. Chen, Z. L. Pei, X. Wang, C. Sun and L. S. Wen, J. Vac. Sci. Technol., A19, 963 (2001) https://doi.org/10.1116/1.1368836
  10. J. Mass, P. Bhattacharya and R. S. Katiyar, Mat. Sci. and Eng., 8103, 9 (2003) https://doi.org/10.1016/S0921-5107(03)00127-2
  11. T. Minami, H. Nanto and S. Takata, Jpn. J. Appl. Phys., 24, L605 (1985) https://doi.org/10.1143/JJAP.24.L605
  12. K. Tominage. M. Kataoka;T. Ueda. M. Chong. Y. Shintami and I. Mori, Thin Solid Film, 253, 9 (1994) https://doi.org/10.1016/0040-6090(94)90285-2