DOI QR코드

DOI QR Code

Optical Properties of ZnHgGa4Se8 and ZnHgGa4Se8:Co2+ Single Crystals

  • Lee Choong-Il (Department of Physics, Sunchon National University)
  • Published : 2005.10.01

Abstract

[ $ZnHgGa_4Se_8\;and\;ZnHgGa_4Se_8::Co^{2+}$ ] single crystals were grown by the Bridgman-Stockbarger method. The single crystals crystallized into a defect chalcopyrite structure. The optical energy band gap of the single crystals was investigated in the temperature range 11-300K. The optical energy band gap of the $ZnHgGa_4Se_8:Co^{2+}$ single crystal was smaller than that of the $ZnHgGa_4Se_8$ single crystal. The temperature dependence of the optical energy band gap of the single crystals was well fitted by the Varshni equqtion. The impurity optical absorption spectrum of the $ZnHgGa_4Se_8:Co^{2+}$ single crystal was measured in the wavelength region 300-2300 m at 80 K. Impurity absorption peaks in the spectrum were analyzed within the framework of the crystal field theory and were attributed to the electron transitions between the energy levels of $Co^{2+}$ sited in the Td symmetry point.

Keywords

References

  1. A. N. Georgobiani, S. I. Radautsan and I. M. Tiginyanu, Sov. Phys. Semicond., 19, 121 (1985)
  2. G. B. Abdullaev, V. G. Agaev, V. B. Antonov, R. Kh. Nani and E. Yu. Salaev, Sov. Phys. Semicond., 6, 1492 (1973)
  3. S. I. Radautsan, I. M. Tiginyanu, V. N. Fulga and Yu. O. Derid, Phys. Status Solidi, A 114, 259 (1989) https://doi.org/10.1002/pssa.2211140125
  4. E. Grilli and M. Guzzi, Proceedings of the 7th International Conference on Ternary and Multinary Compounds, Snowmass, 1986, edited by S. K. Deb and A. Zunger (Materials Research Society, Pittsburgh, 1987), p. 283
  5. G. Antonioli, A. Cucinotta and P. P. Lottici, Crystal. Res. Technol., 31, 793 (1996)
  6. C. Razzetti and P. P. Lottici, Jpn. J. Appl. Phys., 32, 431 (1993) https://doi.org/10.1143/JJAP.32.L431
  7. T. G. Kerimova, Sh. S. Mamedov and R. Kh. Nani, Sov. Phys. Semicond., 15, 81 (1981)
  8. A. N. Georgobiani, P. N. Matlinskii, S. I. Radautsan, I. M. Tiginyanu and V. V. Ursaki, Sov. Phys. Semicond., 20, 702 (1986)
  9. W. T. Kim, C. S. Chung, Y. G. Kim, M. S. Jin and H. G. Kim, Phys. Rev., B 38, 2166 (1988) https://doi.org/10.1103/PhysRevB.38.2166
  10. Y. G. Kim, H. G. Kim. W. T. Kim, J. S. Kim, D. S. Kim, D. S. Ma and H. L. Park, Phys. Rev., B 39, 8747 (1989) https://doi.org/10.1103/PhysRevB.39.8747
  11. W. T. Kim, M. S. Kim, S. C. Hyun, Y. G. Kim and B. C. Park, Solid State Commun., 74, 123 (1990) https://doi.org/10.1016/0038-1098(90)90618-L
  12. W. T. Kim, M. S. Kim, S. H. Cheon, Y. G. Kim and B. C. Park, Solid State Commun., 74, 127 (1990) https://doi.org/10.1016/0038-1098(90)90619-M
  13. W. T. Kim, G. J. Cho, C. S. Kim and C. D. Kim, Phys. Rev., B 43, 14265 (1991) https://doi.org/10.1103/PhysRevB.43.14265
  14. S. Sugano, Y. Tanabe and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals (Academic Press, NY, 1970)
  15. J. J. Pankove, Optical Processes in Semiconductors (Dover Pub. Co., NY, 1971), ch. 3
  16. Y. P. Varshni, Physica 34, 149 (1967)
  17. I. Aksenov, T. Kai, N. Nishikawa and K. Sato, Jpn. J. Appl. Phys., 32, L516 (1993) https://doi.org/10.1143/JJAP.32.L516
  18. H. A. Weakliem, J. Chem. Phys., 36, 2117 (1960) https://doi.org/10.1063/1.1732840