DOI QR코드

DOI QR Code

Effects of Component Change of Bonding Materials on Field Emission Properties of CNT-Cathodes

본딩재료의 성분 변화가 탄소나노튜브 캐소드의 전계방출 특성에 미치는 영향

  • Shin Heo-Young (School of Materials Science and Engineering, Pusan National University) ;
  • Seong Myeong-Seok (School of Materials Science and Engineering, Pusan National University) ;
  • Kim Tae-Sik (School of Materials Science and Engineering, Pusan National University) ;
  • Oh Jeong-Seob (School of Materials Science and Engineering, Pusan National University) ;
  • Jung Seung-Jin (School of Materials Science and Engineering, Pusan National University) ;
  • Lee Ji-Eon (School of Materials Science and Engineering, Pusan National University) ;
  • Cho Young-Rae (School of Materials Science and Engineering, Pusan National University)
  • 신허영 (부산대학교 재료공학부) ;
  • 성명석 (부산대학교 재료공학부) ;
  • 김태식 (부산대학교 재료공학부) ;
  • 오정섭 (부산대학교 재료공학부) ;
  • 정승진 (부산대학교 재료공학부) ;
  • 이지언 (부산대학교 재료공학부) ;
  • 조영래 (부산대학교 재료공학부)
  • Published : 2005.11.01

Abstract

The effects of change in the component of bonding materials in carbon nanotube cathode (CNT-cathode) on field enhancement and field emission characteristics were investigated. The field enhancement factor$\beta$ was dependent on the electrical conductivity of the bonding materials. The use of frit glass as a bonding material showed a higher field enhancement factor and better field emission characteristics than an Ag paste. The reason for why the frit glass showed better field emission characteristics can be summarized as follows. First, a frit glass improves the real aspect ratio of CNTs compared to an Ag paste. Second, the number of CNTs in CNT-cathodes is considerably reduced because the CNTs were extensively oxidized during $390^{\circ}C$ heat treatment in air atmosphere in the case of Ag paste.

Keywords

References

  1. Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig and R. P. H. Chang, Appl. Phys. Lett., 72, 2912 (1998) https://doi.org/10.1063/1.121493
  2. J. M. Kim, W. B. Choi, N. S. Lee and J. E. Jung, Diamond Relat. Mater., 9, 1184 (2000) https://doi.org/10.1016/S0925-9635(99)00266-6
  3. J. M. Bonard, J. P. Salvetat, T. Stockli and W. A. de Heer, Appl. Phys. Lett., 73, 918 (1998) https://doi.org/10.1063/1.122037
  4. Y. C. Choi, Y. M. Shin, D. J. Bae, S. C. Lim, Y. H. Lee and B. S. Lee, Diamond Relat. Mater., 10, 1457 (2001) https://doi.org/10.1016/S0925-9635(01)00380-6
  5. L. Nilsson, O. Groening, C. Emrnenegger, O. Kuettel, E. Schaller and L. Schlapbach, Appl. Phys. Lett., 76, 2071 (2000) https://doi.org/10.1063/1.126258
  6. Y. C. Choi, Y. M. Shin, S. C. Lim, D. J. Bae, Y. H. Lee and B. S. Lee, J. Appl. Phys., 88, 4898 (2000) https://doi.org/10.1063/1.1314614
  7. D. H. Kim, H. S. Jang, C. D. Kim, D. S. Cho, H. D. Kang and H. R. Lee, Chem. Phys. Lett., 378, 232 (2003) https://doi.org/10.1016/S0009-2614(03)01249-1
  8. D. H. Kim, T. S. Kim, B. K. Ahn, H. Y. Shin, D. G. Lee, H. K. Cho, and Y. R. Cho, Materials Science Forums, 475-479, 1771 (2005) https://doi.org/10.4028/www.scientific.net/MSF.475-479.1771
  9. H. N. Lin, Y. H. Chang, J. H. Yen, J. H. Hsu, I. C. Leu, and M. H. Hon, Chem. Phys. Lett., 339, 422 (2004) https://doi.org/10.1016/j.cplett.2004.10.040
  10. C. W. Chen, M. H. Lee and S. J. Clark, Appl. Surf. Sci., 228, 143 (2004) https://doi.org/10.1016/j.apsusc.2004.01.004
  11. A. Okamoto and H. Shinohara, Carbon, 43, 431 (2005) https://doi.org/10.1016/j.carbon.2004.10.006
  12. W. S. Choi, H. Y. Shin, D. H. Kim, B. G. Ahn, W. S. Chung, D. G. Lee, and Y. R. Cho, Kor. J. Mater. Res., 13, 663 (2003) https://doi.org/10.3740/MRSK.2003.13.10.663
  13. S. L. Fang, A. M. Rao, P. C. Eklund, P. Nikolaev, A. G. Rinzler and R. E. Smalley, J. Mater. Res., 13, 2045 (1998) https://doi.org/10.1557/JMR.1998.0333
  14. C. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, W. S. Kim, W. B. Choi, N. S. Lee, J. M. Kim, Y. G. Choi, S. C. Yu, and Y. H. Lee, Appl. Phys. Lett., 75, 20 (1999) https://doi.org/10.1063/1.124837
  15. A. N. Obraztsov, A. P. Volkov and l. Pavlovsky, Diamond Relat. Mater., 9, 1190 (2000) https://doi.org/10.1016/S0925-9635(99)00293-9
  16. J. W. Gadzuk, and E. W. Plummer, Rev. Mod. Phys., 45, 487 (1973) https://doi.org/10.1103/RevModPhys.45.487
  17. J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, Phys. Rev., 92, 45 (1953) https://doi.org/10.1103/PhysRev.92.45
  18. T. B. Massalski, Binary Alloys Phase Diagram, 2nd ed. edited by W. W. Scott, Jr. Vol. 1, p. 19, ASM International, Metals Park, OH, (1990)
  19. H. Y. Shin, W. S. Chung, K. H. Kim, Y. R. Cho, and B. C. Shin, To be published in J. Vac. Sci. Tech. B, 23(6), Nov/Dec (2005) https://doi.org/10.1116/1.2110342