DOI QR코드

DOI QR Code

The Effect of Cobalt Oxide Addition on Electrical and Dielectic Stability of Zinc Oxide Varistors

코발트 산화물 첨가가 산화아연 바리스터의 전기적, 유전적 안정성에 미치는 영향

  • Nahm Choon-Woo (Department of Electrical Engineering, Dongeui University) ;
  • Yoo Dae-Hoon (Department of Electrical Engineering, Dongeui University)
  • 남춘우 (동의대학교 전기공학과) ;
  • 유대훈 (동의대학교 전기공학과)
  • Published : 2005.11.01

Abstract

The electrical and dielectric stability of zinc oxide-based varistors were investigated with the cobalt oxide contents in the range of $0.5\~5.0 mo\l%$. As cobalt oxide contents increased, the ceramic density increased in the range of $5.25\~5.55g/cm^3$ and the varistor voltage decreased in the range of $235.3\~86.0V$. The varistor with on addition of cobalt oxide $1.0 mol\%$ exhibited good nonlinearity. in which the nonlinear exponent is 66.6 and the leakage current is $1.2{\mu}A$. Furthermore, the varistors exhibited the highest electrical and dielectric stability, with $\%{\Delta}V_{1mA}=-1.9\%,\;\%{\Delta}{\alpha}=-10.5\%,\;\%{\Delta}I_L=+275.0\%,\;and\;\%{\Delta}tna{\delta}=+55.6\%$, under DC accelerated aging $0.95V_{1mA}/150^{\circ}C/24h$.

Keywords

References

  1. A. B. Alles and L. Burdick, J. Appl. Phys., 70, 6883 (1991) https://doi.org/10.1063/1.349812
  2. Y. S. Lee and T. Y. Tseng, J Amer, Ceram. Soc., 75, 1636 (1992) https://doi.org/10.1111/j.1151-2916.1992.tb04236.x
  3. A. B. Alles, R. Puskas, G. Callahan and V. L. Burdick, J. Amer, Ceram. Soc., 76, 2098 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb08339.x
  4. T. K. Gupta, J. Amer. Ceram. Soc., 73, 1817 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  5. L. M. Levinson and H. R. Philipp, Amer. Ceram. Soc. Bull., 65, 639 (1986)
  6. D. R. Clarke, J. Amer. ceram. Soc., 82, 485, (1999)
  7. C. W. Nahm and C. H. Park, J. Mater. Sci., 35, 3037 (2000) https://doi.org/10.1023/A:1004749214640
  8. C. W. Nahm, J. Eur. Ceram. Soc., 21, 445, (2001) https://doi.org/10.1016/S0955-2219(00)00233-8
  9. C. W. Nahm and H. S. Kim, Mater. Lett., 56, 379 (2002) https://doi.org/10.1016/S0167-577X(02)00490-1
  10. C. W. Nahm, J. A. Park, B. C. Shin and I. S. Kim, J. Ceram. Inter., 30, 1009 (2004) https://doi.org/10.1016/j.ceramint.2003.10.020
  11. C. W. Nahm, J. A. Park and M. J. Kim, J. Mater. Sci., 39, 307 (2004) https://doi.org/10.1023/B:JMSC.0000007762.89222.ec
  12. C. W. Nahm and J. A. Park, J. Kor. Ceram. Soc., 41, 464 (2004) https://doi.org/10.4191/KCERS.2004.41.6.464
  13. C. W. Nahm, Mater. Chem. Phys., 88, 318 (2004) https://doi.org/10.1016/j.matchemphys.2004.07.017
  14. H. H. Hng and K. M. Knowles. J. Mater. Sci., 37, 1143 (2002) https://doi.org/10.1023/A:1014359204034
  15. J. C. Wurst and J. A. Nelson, J. Amer. Ceram. Soc., 97, 109 (1972) https://doi.org/10.1111/j.1151-2916.1972.tb11224.x