DOI QR코드

DOI QR Code

Characterization of TiB2 Particle Reinforced Cu Matrix Composites Processed by Turbulent In-situ Mixing

난류용탕 in-situ 합성법에 의해 제조된 TiB2 입자강화 Cu 기지 복합재료의 특성

  • Kim J. H. (Division of Materials Science and Engineering, Pusan National university) ;
  • Yun J. H. (Division of Materials Science and Engineering, Pusan National university) ;
  • Lee G. G. (School of Materials Process and Engineering, Pukyong National University) ;
  • Choi I. D. (Department of Mechanical & Materials Engineering, Korea Maritime University) ;
  • Park Y. H. (Division of Materials Science and Engineering, Pusan National university) ;
  • Cho K. M. (Division of Materials Science and Engineering, Pusan National university) ;
  • Park I. M. (Division of Materials Science and Engineering, Pusan National university)
  • 김정훈 (부산대학교 재료공학과) ;
  • 윤지훈 (부산대학교 재료공학과) ;
  • 이길근 (부경대학교 소재프로세서공학부) ;
  • 최일동 (한국해양대학교 기계소재공학부) ;
  • 박용호 (부산대학교 재료공학과) ;
  • 조경목 (부산대학교 재료공학과) ;
  • 박익민 (부산대학교 재료공학과)
  • Published : 2005.12.01

Abstract

A copper matrix composite reinforced by turbulent in-situ $TiB_2$ nanoparticle was Prepared by reactions of boron ana titanium. The microstructure, mechanical and electrical properties of the as-drawn composites were investigated. The results showed that the formed $TiB_2$ particles, which had a size of about from 50 to 200nm, exhibited a homogeneous dispersion in the copper matrix. Due to their reinforcement, the hardness and Young's modulus of $Cu-TiB_2$ composites were enhanced with increasing the cooling rate. Moreover, the electrical conductivity of the composites were improved with increasing the cooling rate.

Keywords

References

  1. A. R. C.Westwood, Metall. Trans., 19A, 749 (1988) https://doi.org/10.1007/BF02628353
  2. J. Y. Park, S. J. Oh, C. H. Jung, G. W. Hong, I. H. Kuk, Journal of Materials Science Letters, 18, 67 (1999) https://doi.org/10.1023/A:1006633628227
  3. N. Zhao, Z. Liu, R. Su, Y. Cao, G. Li, Journal of Materials Engineering, 10, 23 (1995)
  4. X. M. Li, D. J Liu, Z. D. Dai, C. Y. Jiang, Materials for Mechanical Engineering, 23(1), 36 (1999)
  5. Y. J. Kwon, M. Kobashi, T. Choh, N. Kanetake, J. Japan Inst. Metals, 65(4), 273 (2001)
  6. Y. V. Baikalova and O. I. Lomovsky, Journal of Alloys and Compounds, 297, 87 (2000) https://doi.org/10.1016/S0925-8388(99)00579-4
  7. T. Maruyama and S. Onose, Journal of Nuclear Science and Technology, 36(4), 380 (1999) https://doi.org/10.3327/jnst.36.380
  8. J. Lee, N. J. Kim, J. Y. Jung, E. S. Lee and S. Ahn, Scripta Materialia, 39(8), 1063 (1998) https://doi.org/10.1016/S1359-6462(98)00246-2
  9. L. J. Masur, J. T. Burke, T. Z. Kattamis and M. C. Flemings, Rapidly solidified amorphous and crystalline alloy, B. H. Kear ed, Boston, (1982)
  10. E. T. Turkdong, Pysical Chemistry of High Temperature Technology, Academic Press, Newyork, 22 (1980)
  11. Z. Y. Ma, J. H. Li, S. X. Li, X. G. Ning, Y. X. Lu and J. Bi, J. Mater. Sci., 31, 741 (1996) https://doi.org/10.1007/BF00367894
  12. R. R. Atri, K. S. Ravichandran and S. K. Jha, Mater. Sci. Eng., A271, 150 (1999) https://doi.org/10.1016/S0921-5093(99)00198-7
  13. L. M. Brown, R. K. Ham, R. B. Nicholson(Eds.), Strengthening Metals in Crystals, 9 (1971)
  14. D. P. H. Hasselman and L. F. Johnson, J. Compo Mater., 21, 508 (1987) https://doi.org/10.1177/002199838702100602