DOI QR코드

DOI QR Code

섬유보강 콘크리트 보를 위한 변형 기반 전단강도모델

Strain-Based Shear Strength Model for fiber Reinforced Concrete Beams

  • Choi Kyoung-Kyu (Dept. of Civil and Env. Engrg., the University of Michigan, GG Brown) ;
  • Park Hong-Gun (Dept. of Architecture, Seoul National University) ;
  • Wight James K. (Dept. of Civil and Env. Engrg., the University of Michigan, GG Brown)
  • 발행 : 2005.12.01

초록

섬유보강 콘크리트 보의 전단강도와 거동 특성을 규명하기 위해서 이론적 연구를 수행하였다. 섬유보강 콘크리트 보의 단면에 작용하는 전단력은 압축대와 인장대에 의해서 지지된다. 압축대의 전단성능은 단면의 휨모멘트에 의해서 발생하는 수직응력과의 상관관계를 고려하여 정의하였으며, 인장대의 전단성능은 섬유보강 콘크리트의 균열 후 인장강도를 고려하여 정의하였다. 보의 휨변형에 따라서 수직응력의 크기와 분포가 변화하므로, 보의 전단성능은 휭변형의 함수로 정의하였다. 전단성능곡선과 전단요구곡선의 교점에서, 보의 전단강도와 위험단면의 위치가 결정된다. 제안된 설계 방법은 섬유보강 콘크리트와 일반 콘크리트 보를 위한 통합전단강도모델로 사용 할 수 있다.

A theoretical study was performed to investigate the behavioral chracteristics and shear strength of fiber reinforced concrete slender beams. In the fiber reinforced concrete beam, the shear force applied to a cross section of the beam was resisted by both compressive zone and tensile zone. The shear capacity of the compressive zone was defined addressing the interaction with the normal stresses developed by the flexural moment in the cross section. The shear capacity of the tensile zone was defined addressing the post-cracking tensile strength of fiber reinforced concrete. Since the magnitude and distribution of the normal stresses vary according to the flexural deformation of the beam, the shear capacity of the beam was defined as a function of the flexural deformation of the beam. The shear strength of the beam and the location of the critical section were determined at the intersection between the shear capacity and shear demand curves. The proposed method was developed as a unified shear design method which is applicable to conventional reinforced concrete as well as fiber reinforced concrete.

키워드

참고문헌

  1. Li, V., Ward, R., and Hamza, A. M, 'Steel and Synthetic Fibers as Shear Reinforcement', ACI Material. J., Vol.89, No.5, 1992, pp.499-508
  2. Naaman A. E., Moavenzadeh F., and McGarry, F. J., 'Probabilistic Analysis of Fiber-Reinforced Concrete', Struct. Div., J. Engrg. Mecfunics Division, ASCE, Vol. 100, No.EM2, Apr. 1974, pp.397-413
  3. Narayanan, R. and Darwish, I. Y. S., 'Use of Steel Fibers as Shear Reinforcement', ACI Struct. J., Vol.84, No.3, 1987, pp.216-227
  4. Naaman A. E. and Najm, H., 'Bond-Slip Mechanisms of Steel Fibers in Concrete', ACI Materials J., Vol.88, No.2, 1991, pp.135-145
  5. Mansur, M. A., Ong, K. C. G., and Paramsivam, P., 'Shear Strength of Fibrous Concrete Beams without Stirrups', J. Struct. Engrg., ASCE, Vol. 112, No.9, 1986, pp.2066-2079 https://doi.org/10.1061/(ASCE)0733-9445(1986)112:9(2066)
  6. Khuntia, M., Stojadinovic, B., and Gael, S. C., 'Shear Strength of Normal and High-Strength Fiber Reinforced Concrete Beams without Stirrups', ACI Struct. J., Vol.96, No.2, 1999, pp.282-289
  7. Noghabai, K., 'Beams of Fibrous Concrete in Shear and Bending;Experiment and Model', J. Struct. Engrg., ASCE, Vol.126, No.2, 2000, pp243-251 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:2(243)
  8. Ashour, S. A., Hasanain, G. S., and Wafa, F. F., 'Shear Behavior of High-Strength Fiber Reinforced Concrete Beams', ACI Struct. J., Vol.89, No.2, 1932, pp.176 -184
  9. Batson, G. Jenkins, E., and Spatney, R., 'Steel Fibers as Shear Reinforcement in Beams', ACI J., Vol.69, No. 10, 1972, pp.640-644
  10. ACI Committee 544, 'Design Consideration for Steel Fiber Reinforced Concrete (ACI 544.4R-88)', ACI Struct. J., Vol.85, No.5, 1988, pp.533-580
  11. Sharma, A. K., 'Shear Strength of Steel Fiber Reinforced Concrete Beams', ACI J., Vol.83, No.4, 1986, pp.624 -628
  12. 최경규, 박홍근, '플랫플레이트-기둥 접합부의 뚫림전단강도', 콘크리트학회 논문집, 16권 2호, 2004, pp.163-174
  13. Naaman A. E. and Reinhardt, H. W., 'High Performance Fiber Reinforced Cement Composites' HPFRCC 4', RILEM, Proceedings Pro 30, RITEM Publications S.A.R.L., 2003, pp.95-114
  14. LaFraugh, R. W. and Moustafa, S. E., Experimental Investigation of the Use of Steel Fibers for Shear Reinforcement, Technical Report, Concrete Technology Associates, Tacoma, Wash., Jan. 1975, 52pp
  15. Fanella, D. A. and Naaman A. E., 'Stress-Strain Properties of Fiber Reinforced Mortar in Compression', ACI J., Vol.82, No.3, 1985, pp.475-482
  16. Swamy, R. N. and Bahia, H. M., 'Effectiveness of Steel Fibers as Shear Reinforcement', Concrete International: Design and Construction, Vol.7, No.3, 1985, pp.35-40
  17. Kotsovos, M. D. and Newman, J. B., 'Effect of boundary conditions upon the behaviour of concrete under concentrations of load', Magazine of Concrete Research, Vol.33, No.116, 1981, pp.161-170 https://doi.org/10.1680/macr.1981.33.116.161
  18. Zararis, P. D. and Papadakis, G. C., 'Diagonal shear failure and size effect in RC beams without web reinforcement', J. Strud. Engrg, ASCE, Vol.121, No.7, 2001, pp.733-742
  19. Jelic, I., Pavlovic, M. N., and Kotsovos, M D., 'A study of dowel action in reinforced concrete beams', Magazine of Concrete Research, April, 1999
  20. Tureyen, A. K and Frosch, R. J, 'Concrete Shear Strength: Another Perspective', ACI Struct. J., Vol.100, No.5, 2003, 609pp
  21. Chen, W. F., Plasticity in reirtorced concrete, MCGraw-Hill, New York, 1982, pp.204-205
  22. Morsch, E., Der Eisenbetonlxm, Seine Anwendung und Theorie, 1 th Edition, Im Selbstverlag der Firma, Neustadt, 1902, 119pp
  23. Amara, K. B., 'Griffith energy balance model crackgrowth prediction in reinforced concrete', J. Engrg Mech, ASCE, Vol.122, No.7, 1996, pp.683-689 https://doi.org/10.1061/(ASCE)0733-9399(1996)122:7(683)
  24. MacGregor, J. G., Sozen, M. A., and Siess, C. P., Strength and Behavior of Prestressed Concrete Beams with Web Reinforcement, University of Illinois Civil Engineering Studies, Structural Research Series 210, Urbana, August, 1960
  25. Bazant, Z. P., 'Fracturing Truss Model: Size Effect in Shear Failure of Reinforced Concrete', J. Engrg. Mech, ASCE, Vol.123, No.12, 1997, pp.1216-1288
  26. Hasegawa, T., Shioya, T., and Okada, T., 'Size Effect on Splitting Tensile Strength of Concrete', Proc., Japan Concrete Inst. 7th Conf., 1985, pp.300-312
  27. Maalej M. and Li, V. C., 'Flexural/Tensile-strength ratio in engineered cementitious composites', J. Materials in Civil Engineering, ASCE, Vol.6, No.4, 1994, pp.513-528 https://doi.org/10.1061/(ASCE)0899-1561(1994)6:4(513)
  28. Lim, T.Y, Paramsivam, P., and Lee, S. L., 'Shear and Moment Capacity of Reinforced Steel-Fiber-Concrete Beams', Magazine of Concrete Research, Vol.39, No. 140, 1987, pp.148-160 https://doi.org/10.1680/macr.1987.39.140.148
  29. Shin, S. W., Oh, J. and Ghosh, S. K, Shear Behavior of Laboratory- Sized High-Strength Concrete Beams Reinforced with Bars and Steel Fibers, Fiber Reinforced Concrete Developments and Innovations, SP-142, ACI, Farmington Hills, 1994, pp.181-200
  30. Murty, D.S.R, and Venkatacharyulu, T., 'Fiber Reinforced Concrete Beams subjected to Shear Force', Proceedings of the International Symposium on Fiber Reirnforced Concrete, 1987, pp.286-298
  31. Li, V., Wang, Y., and Backer, S., 'Effect of inclining angle, bundling and surface treatment on synthetic Fibre pull-out from cement matrix', Composites, Vol.21, No.2, 1900, pp.132-140 https://doi.org/10.1016/0010-4361(90)90005-H
  32. Ward, R J. and Li, V., 'Dependence of Flexural Behavior of Fiber Reinforced Mortar on Material Fracture Resistance and Beam Size', ACI Material J., Vol.87, No.6, 1990, pp.627-637
  33. Krefeld, W. J. and Thurston, C. W., 'Studies of the Shear and Diagonal Tension Strength of Simply Supported Reinforced Concrete Beams,' ACI J., Vol.63, No.2, 1966, pp.451-476
  34. Kwak, Y., Eberhard, M. O., Kim W., and Kim, J., 'Shear strength of steel fiber-reinforced concrete beams without stirrups', ACI Struct. J., Vol.99, No.4, 2002, pp.530-538