DOI QR코드

DOI QR Code

Coupling Intensity Effects in Ladder-type Electromagnetically Induced Transparency of Rb atoms

결합광 세기에 따른 Rb 원자의 사다리형 전자기 유도 투과

  • Moon, H.S. (Division of Optical Metrology, Korea Research Institute of Standards and Science) ;
  • Lee, L. (Department of Physics Education, Korea National University of Education) ;
  • Kim, J.B. (Department of Physics Education, Korea National University of Education)
  • 문한섭 (한국표준과학연구원 광기술표준부) ;
  • 이림 (한국교원대학교 물리교육과) ;
  • 김중복 (한국교원대학교 물리교육과)
  • Published : 2005.02.01

Abstract

We have studied the polarization effects and the coupling intensity effects of electromagnetically induced transparency(EIT) in the 5S$_{1}$2-/5P$_{3}$2-/5D$_{5}$2/ ladder system of Rb. We obtained the EIT spectrum with the hyperfine structure of 5D$_{5}$2/ transitions and the minimal width of the measured EIT spectrum was 6.5 MHz. We observed the change of the relative magnitudes of the hyperfine structure of EIT according to not only the polarizations of lasers but also the intensity of the coupling laser. The cause of the coupling intensity effects is that the EIT signal nonlinearly increases to the coupling intensity.

우리는 Rb원자의 5S$_{1}$2-/5P$_{3}$2-/5D$_{5}$2/ 전이선에서 조사광과 곁합광의 편광조합 그리고 결합광 세기에 따른 사다리형 전자기 유도 투과(EIT) 현상을 조사하였다. 우리는 5D$_{5}$2/ 전이선에서 초미세구조를 가진 사다리형 EIT 스펙트럼을 얻었고, EIT 스펙트럼의 최소 선폭은 6.5 MHz로 측정되었다. 우리는 EIT 초미세구조의 상대적인 크기가 레이저의 편광조합 뿐만 아니라 결합광의 세기에 따라서 변하는 것을 실험적으로 관측하였고, 결합광의 세기에 따라 신호의 크기가 달라지는 이유는 광의 세기에 대하여 원자계가 비선형적으로 상호작용하기 때문이라는 사식을 밝혔다.

Keywords

References

  1. S. E. Harris, 'Electromagnetically induced transparency', Phys. Today, vol. 50, no. 7, pp. 36-42, 1997 https://doi.org/10.1063/1.881806
  2. K. J. Boller, A. Imamoglu, and S. E. Harris, 'Observation of electromagnetically induced transparency', Phys. Rev. Lett., vol. 66, no. 1, pp. 2593-2596, 1991 https://doi.org/10.1103/PhysRevLett.66.2593
  3. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, 'Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms', Phys. Rev. Lett., vol. 74, pp. 666-669, 1995 https://doi.org/10.1103/PhysRevLett.74.666
  4. H. S. Moon, H. A. Kim, B. S. Kim, and J. B. Kim, 'Electromagnetically induced transparency in an ideal three level system in 87Rb atoms', J. Korean Phys. Soc., vol. 35, no. 3, pp. 207-211, 1999
  5. G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, and M. O. Scully, 'Laser oscillation without population inversion in a sodium atomic beam', Phys. Rev. Lett., vol. 76, pp. 2053-2056, 1996 https://doi.org/10.1103/PhysRevLett.76.2053
  6. B. S. Ham, S. M. Shahriar, and P. R. Hemmer, 'Electromagnetically induced transparency over spectral hole-burning temperature in a rare-earthdoped solid', J. Opt. Soc. Am. B, vol. 16, no. 5, pp. 801-804, 1999 https://doi.org/10.1364/JOSAB.16.000801
  7. S. A. Hopkins, E. Usadi, H. X. Chen, and A. V. Durrant, 'Electromagnetically induced transparency of laser-cooled rubidium atoms in three-level A -type systems', Opt. Commun., vol. 138, pp. 185-192, 1997 https://doi.org/10.1016/S0030-4018(97)00030-8
  8. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, 'Light speed reduction to 17 metres per second in an ultracold atomic gas', Nature(London), vol. 397, pp. 594-598, 1999 https://doi.org/10.1038/17561
  9. S. E. Harris and L. V. Hau, 'Nonlinear optics at low light levels', Phys. Rev. Lett., vol. 82, pp. 4611-4614, 1999 https://doi.org/10.1103/PhysRevLett.82.4611
  10. David J. Fulton, Sara Shepherd, Richard R. Moseley, Bruce D. Sinclair, and Malcolm H. Dunn, 'Continuous-wave electromagnetically induced transparency: A comparison of V, Lambda, and cascade systems', Phys. Rev. A, vol. 52, no. 3, pp. 2302-2311, 1995 https://doi.org/10.1103/PhysRevA.52.2302
  11. D. McGloin, M. H. Dunn, and D. J. Fulton, 'Polarization effects in electromagnetically induced transparency', Phys. Rev. A, vol. 62, pp. 053802-1 - 053802-6, 2000
  12. Julio Gea-Banacloche, Yong-qing Li, Shao-zheng Jin, and Min Xiao, 'Electomagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment', Phys. Rev. A, vol. 51, no. 1, pp. 576-584, 1995 https://doi.org/10.1103/PhysRevA.51.576
  13. S. D. Badger, I. G. Hughes, and C. S. Adams, 'Hyperfine effects in electromagnetically induced transparency', J. Phys. B: At. Mol. Opt. Phys., 34, pp. L749-L756, 2001 https://doi.org/10.1088/0953-4075/34/5/304
  14. Baolong Lu, W. H. Burkett, and Min Xiao, 'Electromagnetically induced transparency with variable coupling-laser linewidth', Phys. Rev. A, vol. 56, pp. 976-979 1997 https://doi.org/10.1103/PhysRevA.56.976
  15. M. Stahler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, 'Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation', Opt. Lett., vol. 27, no. 16, pp. 1472-1474, 2002 https://doi.org/10.1364/OL.27.001472

Cited by

  1. System calibration method for Silicon wafer warpage measurement vol.13, pp.6, 2014, https://doi.org/10.14775/ksmpe.2014.13.6.139