DOI QR코드

DOI QR Code

Wavelength tunability of a fiber ring laser using a novel strain device

새로운 스트레인 인가장치를 이용한 광섬유 링 레이저의 파장가변 특성

  • Kim, Sung-Chun (School of Information and Communications Engineering, SungKyunKwan University) ;
  • Jang, Hyun-Soo (School of Information and Communications Engineering, SungKyunKwan University) ;
  • Lee, Kyung-Shik (School of Information and Communications Engineering, SungKyunKwan University)
  • 김성춘 (성균관대학교 정보통신공학부 광통신 연구실) ;
  • 장현수 (성균관대학교 정보통신공학부 광통신 연구실) ;
  • 이경식 (성균관대학교 정보통신공학부 광통신 연구실)
  • Published : 2005.02.01

Abstract

We fabricated a tunable fiber ring laser consisting of a novel strain device and fiber Bragg gratings. The lasing power and FWHM bandwidth of the optical fiber ring laser was -12dBm and 0.05nm respectively. The fiber ring laser was tuned as much as 10nm at a 8000.

광섬유 링 레이저의 출력파장 가변을 위해서 신뢰성있는 새로운 스트레인 인가장치를 제작하고 이 장치를 이용하여 파장가변 광섬유 링 레이저를 구현하였다. 제작된 광섬유 링 레이저의 출력파워는 -12 dBm이었으며, 선폭은 0.05 nm이었다. 새로운 스트레인 인가장치를 이용하여 광섬유에 8000 $\mu$ strain을 인가하였을 때 광섬유 링 레이저의 출력파장은 약 10 nm 가변되는 것을 확인 할 수 있었다.

Keywords

References

  1. Y. Z. Xu, H. Y. Tam, S. Y. Liu, and M. S. Demokan, 'Pump-Induced Thermal Effects in Er-Yb Fiber Grating DBR Lasers,' IEEE Photon. Technol. Lett., vol. 10, no. 9, pp. 1253-1255, 1998 https://doi.org/10.1109/68.705607
  2. Hong Yoon, Kyoo Man Cho, Sang Bae Lee, Sang Sam Choi, and Dongwook Park, 'Tunable Er3+-doped fiber distributed-feedback laser,' LEOS 2000, pp. 401-402, 2000
  3. Shinji Yamashita and Masato Nishihara, 'Widely tunable erbium-doped fiber ring laser over 80nm,' Proc. APCC/OECC '99, Beijing, China, pp. 1509-1510, 1999
  4. J. J. Pan, Y. Shi, and T. Zhu, 'Continuously tunable high power fiber lasers with 11nm tunability,' Proc. OFC '99, San Diego, CA, pp. 199-201, 1999
  5. A. D. Dersey and W. W. Morey, 'Multi-element bragg-grating based fibre-laser strain sensor,' Electron. Lett., vol. 29, no. 11, pp. 964-966, 1993 https://doi.org/10.1049/el:19930642
  6. Sungchul Kim, Jaejong Kwon, Seungwoo Kim, and Byoungho Lee, 'Multiplexed strain sensor using fiber gating-tuned fiber laser with a semiconductor optical amplifier,' IEEE Photon. Technol. Lett., vol. 13, no 4, pp. 350-351, 2001 https://doi.org/10.1109/68.917849
  7. P. J. Moreira, L. A. Ferreira, J. L. Santos, and F. Farahi, 'Dynamic range enhancement in Fiber Bragg Grating sensors using a multimode laser diode,' IEEE Photon. Technol. Lett., vol. 11, no. 6, pp. 703-705, 1999 https://doi.org/10.1109/68.766791
  8. Sung Chul Kang, Se Yoon Kim, Sang Bae Lee, Seo Won Kwon, Sang Sam Choi, and Byoungho Lee, 'Temperature-Independent Strain Sensor System Using a Tilted Fiber Bragg Grating Demodulator,' IEEE Photon. Technol. Lett., vol. 10, no. 10, pp. 1461-1463, 1998 https://doi.org/10.1109/68.720294
  9. Bai-Ou Guan, Hwa-Yaw Tam, Xiao-Ming Tao, and Xiao-Yi Dong, 'Simultaneous Strain and Temperature Measurement Using a Superstructure Fiber Bragg Grating,' IEEE Photon. Technol. Lett., vol. 12, no. 6, pp. 675-677, 2000 https://doi.org/10.1109/68.849081
  10. A. T. Alavie, S. E. Karr, A.Othonos, and R. M. Measures, 'A multiplexed bragg grating fiber laser system,' IEEE Photon. Technol. Lett., vol. 5, no. 9, pp. 1112-1114, 1993 https://doi.org/10.1109/68.257209
  11. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, 'Fiber Grating Sensor,' J. Lightwave Technol., vol. 15, no. 8, pp. 1442-1463, 1997 https://doi.org/10.1109/50.618377