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ABSTRACT

Higher productivity requires high-speed motion of machine tool axes. The iron core linear DC motor (LDM) is

widely accepted as a viable candidate for high-speed machine tool feed unit. LDM, however, has two inherent

disturbance force components, namely cogging and thrust force ripple. These disturbance forces directly affect the

tracking accuracy of the feeding system and must be eliminated or reduced. In order to reduce motor ripple, this research

adapted the feedforward compensation method and neural network control. Experiments carried out with the linear

motor test setup show that these control methods are effective in reducing motor ripple.
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1. Introduction

High-speed machining systems conventionally
employ indirect feeding systems with rotary motors and
ball screws, which have limitations to increasing speed
and acceleration. On the other hand, the direct drive
method with linear motors has become more popular, and
it is no longer rare to see machine tools using linear
motors at various international exhibitions like the EMO.
The recent popularity of the direct drive method is due to
the following merits.

o There is no backlash and only small friction

e There is no limit for acceleration and velocity;
velocity is restricted only by the bandwidth of the
encoders and electric power circuits.

o It shows high reliability and high frame stiffness
because of its mechanical simplicity.

Among the various types of linear motors, the linear

DC motor (LDM) is frequently used as a feed unit for
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machine tools. There are two types of LDM, the iron
core type and the non-iron core type. Because of having
a high thrust force, the iron core LDM is more often
adapted in machine tool applications. Instead of having a
high thrust force, however, the iron core LDM
experiences a motor ripple that disturbs the feeding
system including the LDM itself. This motor ripple
decreases the moving accuracy of the feeding system.

There are two types of motor ripple: cogging and
force ripple. Cogging is a disturbance caused by a
magnetic force, while force ripple is a disturbance caused
by an electro-magnetic effect.

The iron cores in the moving parts of the LDM are
magnetically attracted by the permanent magnets
arranged on the yoke. Therefore the moving part is
forced to move into a magnetically stable position. The
force is the cogging. The magnitude of the cogging is
only dependent on the relative position of iron cores to
the permanent magnets and is not dependent on the
motor current. Force ripple, however, is concerned with
motor current. When the current flows through a coil
wound on iron cores, a magnetic field is induced. This
magnetic field and the permanent magnet jointly
generate the force ripple, as explained by Fleming's rule.
Force ripple also exists in non-iron core linear motors too.
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Force ripple is generated only when the motor
current is not equal to zero and its absolute value is
dependent on magnitude of the required force and on the
relative position of the moving parts. This motor ripple
causes velocity fluctuation and the fluctuation leads to
tracking errors in moving systems ' In this study, a
method is suggested to improve the tracking accuracy of

iron core LDM feeding systems by reducing motor ripple.

Feedforward compensation and neural network control
are used in this method to reduce the motor ripple.

First, characteristics of the motor ripple in iron core
LDM were studied and the results of feedforward
compensation utilizing these characteristics as pre-filter
were shown. Then it was suggested that the results of
neural network control were better than those of
feedforward compensation, even though no cogging
measurement was needed for neural networks.

To verify the usefulness of the suggested method, a
test setup of the iron core LDM feeding system was built
and experiments were carried out. The results of the
experiments showed that the tracking accuracy of the
feeding system was improved.

2. Feedforward compensation

2.1 Test setup

In order to test on improving traceability, an iron core
LDM test setup was built as shown in Fig. 1. It was
composed of a Samick LMS linear motor and a linear
motion guide (THK HSR55R) with a linear scale of 1um
resolution (Renishaw RGH-22). The Samick LMS LDM
has iron cores wound around three-phase coils. Its
maximum thrust force is 12,000 N and its continuous
thrust force is 6,000 N.

Fig. 1 Experimental setup for linear DC motor feeding system

2.2 DSP controller

A DSP control board is used to control the
experimental setup. The DSP board used was the M44 of
Innovative Integration Co., with a TMS320C44 DSP
chip of TL This chip is capable of a 32-bit float point
calculation with a speed of 60 MHz. The M44 board has
a ‘MOT’ optional board that is exclusively used for
motor control. This optional board enables simultaneous
control of all 4 axes. A CodeWrite editor was used to
write a target program that was downloaded on the DSP
board, and the host program was coded by Visual C++ to
adjust the positioning distance, speed, acceleration, PID
gain and amp on/off. In this study, the encoder signal
was sampled at a 1 kHz sampling speed.

2.3 Cogging measurement

To measure the cogging of a linear motor, a
measurement setup was built with a load cell and laser
interferometer, as shown in Fig. 2. Turning the screw
behind the load cell moved the carriage and its position
was read by laser interferometer. At each interval of 1
mm moving position, the force on the carriage was
measured by the load cell.

Fig. 2 Experimental setup for cogging measurement in
linear motor feeding system
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Fig. 3 Cogging force measured from setup in Fig.1

32



C.-K. Song and G. Khim : International Journal of Precision Engineering and Manufacturing Vol.6, No.1.

In Fig. 3, measured cogging value and its sinusoidal
fitted value are plotted. It is assumed that each permanent
magnet on the yoke has identical features, so the
measuring process is performed at only one pitch section
of the yoke.

In Fig. 3, it is found that the cogging period is 10 mm
and this period is equal to 1/3 of the pitch between
magnets (in Fig. 4, 30 mm). This phenomenon occurs
because the motor current has three phases. The fitted
sinusoidal cogging function is expressed in terms of
position in Equation (1):

F=1166sin{2r>=218) 1)
9.99

Fig. 4 Photography of magnet placement

Unwanted thrust force corresponding to the cogging
measured at a certain position is generated at the position,
so it is necessary to find the corresponding voltage of the
cogging force to compensate unwanted thrust force. Thus,
the thrust force and voltage relationship of the linear
motor must be determined to calculate the voltage of
cogging. A measured voltage-force relationship is shown
in Fig. 5. Although saturation is shown above 4 V,
linearity existed below 4 V. In general, 4 V is sufficient
to control the linear motor.
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Fig. 5 Relationship between voltage and thrust force

L

By using the relationship as shown in Fig. 5,
Equation (1) is replaced by Equation (2).

u=2136sini2r 228 Ly @)
9.99

Fig. 6 shows a control block diagram with a
traditional PID control scheme and an additional
feedforward pre-filter for reducing cogging.

Feedforward
Control

r PID

Linear motor Yy

Fig. 6 Control method of feedforward control

Two experiments were performed. In the first, PID
control was used without feedforward control. In the
second, PID plus feedforward control were used. The
two results are shown in Fig. 7. While PID control alone
showed a tracking error of 150um, the tracking error
from PID with feedforward control was reduced to 75im.
determined that the addition of

feedforward compensation achieved a 50% improvement

Therefore, it is

over PID control alone.
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Fig. 7 Comparison between feedforward and non-

feedforward control

3. Neural network control

3.1 Neural network algorithm

In the neural network algorithm, output follows input
by a learning process. This algorithm is known as a very
effective in controlling nonlinear systems because of its
learning capability.

The learning process begins with setting up an object
function. Then the leaming process should find the
weighting factors to minimize the object function. In the
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neural network algorithm, weighting factors are updated
by using the back propagation algorithm.

In the back propagation algorithm, the weighting
factors are updated by an error signal and the Jacobian
matrix must be searched because the error signal comes
through the system. However, it is very difficult to obtain
a Jacobian matrix so, in this study, the object function
was set up without the Jacobian matrix. This method,
suggested by Kawato, sets object function not as a
difference between input and output of system, but as an
output voltage of the PID controller, as in Equation (3Y.
That is to say, in the control block diagram of Fig. 8, if
the error signal is set up as u pi¢ not as r — y , then
finding the Jacobian matrix is unnecessary.

E= %upidz (3)
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Fig. 8 Control method of neural network control

In the first stage of control, the system is controlled
only by PID controller because the neural network has
not learned yet. But as learning is achieved, the output of
the PID controller, U pid
output of the neural network, Uneural , becomes bigger.
So, in the last stage of control, Uneurai controls the total
system. The system retains stability aithough sudden
disturbance is inflicted on the system because PID

, becomes smaller while the

feedback loop is continued after learning is completed.
In this study, the neural network had 3 neurons as a
hidden layer and its input was the reference position (7 )
and its output was the voltage of neural network output
(U neural ), as shown in Fig. 9.
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Fig. 9 Neural network

3.2 Experiment results

In neutral network control, the weighting factors are
the same for each input. But in the case of position
control problem, it exists a very efficient method for
applying the weighting factors. If different weighting
factors are set up in different positions, the effort of
searching for the optimal weighting factors is only
related to not all positions but one position. However,
this method requires more memory for saving each
weighting factor.

Fig. 10 shows the result of learning when all
weighting factors are identical. Here, n is the number of
learning. When the same weighting factor was applied,
the number of learning was more than 15 but the tracking
error results were not better than those acquired before
learning; on the contrary, in fact, the tracking errors
partially worsened. This means that the weighting factor
was quite suitable at some positions but was unsuitable at
other positions. In conclusion, then, learning was not yet
completed.
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Fig. 10 Learning result where identical weighting factors
were applied

Fig. 11 shows the result of different weighting factors
at each position. As shown in the figure, learning
proceeds and tracking errors decrease. After the 15th
learning, the tracking error is 60um; this value is 10
times better than that achieved before learning.
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Fig. 11 Learning result where individual weighting
factors were applied

34



C.-K. Song and G. Khim : International Journal of Precision Engineering and Manufacturing Vol.6, No. 1.

In Fig. 12 and Fig. 13, the output voltage of the PID
controller, Upid , and the output voltage of the neural
find the
characteristics of the neural network PID controller

network, Unewral , are compared to

before and after learning. As shown in Fig. 12, U pid
exhibits sinusoidal shape, like a cogging graph, before
learning but, as learning proceeds, ¥ pid , the object
function, decreases to near zero. On the other hand,
Uneural shows a meaningless form before learning, but
after learning, it has a shape similar to U pid before
learning, as shown in Fig. 13. In the figure, it is found

that the peak-to-valley value of Uneural is less than that
of Upid .
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Fig. 12 Comparison of PID control voltage without (n=0)
and with learning (n=15)
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Fig. 13 Comparison of Neural network voltage without
(n=0) and with learning (n=15)

4. Conclusion

The iron core linear DC motor has an inherent
disturbance, so called motor ripple, which often becomes
the principal source of tracking errors. This paper
proposes a method for reducing motor ripple in iron core
DC motor feedforward
compensation with cogging measurement together with a
Through the
experiments, the proposed method is proved effective to

linear by employing a

neural network control algorithm.

reduce the motor ripple in linear DC motor.
When we applied feedforward compensation, the
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tracking error was decreased by 50%.

When we applied neural network control and reached
the 15th learning, the tracking accuracy was better than
the results of the feedforward test. Furthermore, this
method does not require cogging measurements.
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