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ABSTRACT

In this study, a computer program is developed for analyzing the elasto-plastic dynamic behaviors of the
plates subjected to line-loading by a low-velocity impactor. The equilibrium equation associated with the Hertzian
contact law is formulated to evaluate the transient dynamic behavior of the impacted plates. Compared with an
elastic analysis, the effects of material plasticity are considered. Consequently, in the case of elasto-plastic
analysis, impulse decreases, displacements increase and contact duration time is longer than that of the elastic
case for the same plate structures. And the time variation of the impacting load is not significant due to the
plasticity except at the beginning of impact duration, and the induced stresses of plate are more realistic.
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1. Introduction The equilibrium equation associated with the
Hertzian contact law is formulated to evaluate the
Interest in impact problems is growing in many transient dynamic behaviour of the impacted plate"“.
technical applications mainly due to safety requirements. A plain strain finite element formulation and a central
Previous studies on a plate impacted by a low velocity difference method are employed for the numerical
impactor have been limited to elastic analysis‘, which calculation of space and time domains, respectively. In
is unrealistic in nature since plastic deformations are order to consider the effect of plasticity, the plastic flow
found in most cases. rule associated with von Mises yield criterion and an
In this study, elasto-plastic dynamic behaviors of a isotropic hardening property are applied.
plate subjected to line-loading by a low-velocity Compared with elastic analysis, the effects of
impactor are analyzed to focus on the plasticity effects material plasticity are discussed. In the case of
in the low velocity impact problems’. Assuming that elasto-plastic analysis, it is concluded that the impulse
the behaviors of the plate are uniform across its width, decreases, displacements increase and contact duration
the plane strain approach is adopted for analyzing the time is longer than that of the elastic case.
plate. Also, assuming that the impactor is much stiffer The time variation of the impacting load is not
than the plate, the impactor is treated as a rigid body. significant due to the plasticity except for the beginning
of the impact, and more realistic resultant stresses are
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A rectangular plate with length L, width W, and
thickness % impacted by a line-nose impactor of mass
m , velocity v, and nose radius » is presented in Fig.
1. Two parallel edges of the plate are clamped, and
the other two edges are free. Assuming that the load
distribution across the width is uniform, and there is no
free edge effect. The impactor is much stiffer than the
plate, and its motion can be described as that of a rigid
body. Also, it is assumed that the contact force between
the impactor and the plate is a point force.

The two-dimensional schematic presentation is
shown in Fig. 2.

3. Theory and Analysis

3.1 Governing equations

For the dynamic analysis of the plate shown in Fig.
2, the following three equations are considered. Two
of them are the equations of motion of the impactor and
the plate, and the other is the contact law which is used
to determine the contact force between the impactor and
the plate.

Since the impactor moves along a perpendicular line
to the plate, the equations of motion of the impactor
are written as follows:

myo, + f = 0 (1)

where f is the contact force, and 7, and #, are the
mass and the acceleration of the impactor, respectively.

In the time domain, the semi-discretized equations of

motion of the plate are’

(MU} + [K; XU} = (F) 2)

where [M] and [K;] are the mass and tangent

stiffness matrices, and {F}, {U} and {¥J} are the
force, displacements, and acceleration vectors,
respectively.

With negligible body forces, the contact force vector
is given by:
{F} = A} 3

where {I} is a vector whose components are zeros
except for the components related to the contact forces.
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Each component denoting the contact point has the
value of -1.

In order to solve Egs. (1) and (2), the contact force
between the impactor and the plate must be known.
In this study, the Hertzian contact law is adopted to
determine the contact force. By assuming Hertzian
pressure distribution, the contact force 7 is related to
the indentation depth o as follows®

a = fla+a ) 1=Inlfrix, + x)] 4
where x,= (1—1%)/zE, and x,=1/7E. The values
of v, E;, and E are Poisson's ratio, Young's modulus
of impactor and Young's modulus of plate respectively.
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The indentation depth @ is the difference in
displacement between the center of the impactor and the

mid-plane of the plate. The first contact between the

impactor and the plate occurs at time 0, and let Js
and d¢ be the displacements of the center of the
impactor and the plate at time ¢, respectively as shown

in Fig. 3. If dc is larger than ds, the plate is not
in contact with the impactor, so the contact force must

be zero. Otherwise the contact force is calculated by
Eq. (4). Thus,
a = 65 - 65 (5)
a=f(x+ 21 —InlAr(x,+ 21 (85260
0=f (8¢80)  (6)

Since the contact force is coupled with displacements
of the impactor and the plate, Eqgs. (1), (2), and (6) must
be solved simultaneously.

3.2 Explicit time integration
At time ¢, the semi-discretized equations of motion

of the plate are

[MUUY + KUY = (F} %)

To solve this system of differential equations, a
finite difference approximation is used in the time
domain. In the above plate problem, the stiffness matrix
of the
displacements, and implicit time integration methods are

and the force vector are the functions

efficient. In this study, the central difference method
is adopted for the explicit time integration. The velocity

and acceleration vectors at time ¢ are

_1_({U} t+4t {U} t—At)

{uy'= 58

®

st _ _1_ t+4r t — At
{uvy' = Atz({U} A0y +{Ur = )
By substituting Eq. (9) into Eq. (7), we have

( Letmy ) (ys = (7Y

(10)

where {F}’ is the effective force vector defined as:

38

International Journal of Precision Engineering and Manufacturing Vol. 6, No. I.

{(F}'= {F}' — [KJH{U}

+ ZMI AU

Using a lumped mass matrix which is a diagonal
and nonsingular matrix, Eq. (10) can be rewritten by
the following components form:

(4) 0

In Eq. (11), the internal force term [K71{ U}’ is
calculated by assembling the element nodal point forces

+ 4
Uit a F;‘

{F¢}’ that are equivalent to the element internal
stresses as follows:

[KA{UY = e%.:l{Fe}t (13)

where N, is the number of elements.
The element nodal point forces are expressed as

follows:

(P = [ [B1(eYav (14)

where [B] is the strain-displacement matrix and {¢¢}°
is the element stress vector.

With the central difference method there is no
iteration in solving non-linear equations and there is no
assembly of the stiffness matrix. Also, by using the
lumped mass matrix there is no need to solve the system
of equations.

The explicit integration method is conditionally
stable, and the stability condition to the time step ¢
is given by:

2

4t < (15)

where @ma is the maximum circular frequency of the
element,

max

3.3 Incremental constitutive relations

Incremental constitutive relations for isotropic

hardening materials can be written as:’

Elastic Region :  {do} = [ D {de}

Plastic Region :
(16)

loading stage {do} = [D,,Nde}

unloading stage {do} = [DXde}
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3.4 Calculation of the contact force
At time ¢+ 4¢ , the contact force is governed by:

8g=0¢:
a’“”Zf”"’(xs+x,,){l—ln[f“””r(xﬁx,,)]}

(17

6S<8C: 0 :ft+Al

In Eq. (17) X5, X5, and » are time-invariant terms,
but o varies with time. At time #+ 4¢, @ is expressed
as Eq. (5) by gttt = 5§+At_ 3?‘",

The displacement 6" a
at time (44t
{U}** 4%, which is known by solving the
equations of motion of the plate at time ¢ as follows:

of the center of the plate
is calculated from the displacement

vector

Slral — v
C at ‘é‘ . ‘éL (18)
8¢'® is the displacement of the impactor.

Assuming linear variation of the contact force from time
t and ¢+ 4t, the velocity and the displacement of the

impactor at time f+ At are'

ty gt dt
thar_ 0 (f 't/ Zdt

v 2m (19)
t+ 4t + 4t
SLt 4 = meo f didt

Sh+ v'dt — ﬁ(Zf’-%f”"") A2 (20)

where m and p'! are the mass and the velocity at time
¢t of the impactor.

By combining Eqs. (17) - (20), the contact force is
expressed as:

8g=0¢:
0=r"" (xe+2,) (1—In[f"“r(x,+ 21}

= 0h— 0 At (2 T FTA) AP + 55

8s< 8.5 0 = fra (21
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3.5 Solution procedure

Step 1

Initialize the vectors which denote the displacement
and the stress of the plate, the velocity and the

displacement of the impactor, and the contact force.

Step 2

Solve the equtions of the motion of the plate at time
t, and calculate the displacement of the plate at time
t+dt.

Step 3

Compute the contact force at time ¢+ 4¢ from Eq.
(21). Compute the velocity, the displacement, and the
stresses of the impactor at time ¢+ 4¢ from Eqgs. (19)
and (20).

Step 4
Print the results at time ¢+ 4¢. For each time step,
repeat from Step 2 to Step 4.

4. Results and Discussion

The finite element model for the impacted plate is
shown in Fig. 4. Due to the symmetry of the boundary
and loading conditions only half of the plate is to be
analyzed.

Before these numerical simulations, a simple
verification is carried out to confirm the validity of the
present approach. The same plate which is loaded by
a rectangular pulse of 86.5 AN is analyzed, and the
resultant displacements and stresses at the center point
are compared in Fig. 5 and 6. These comparisons show
good agreement with the results of a commercial FE

program ANSYS.

Impactor : m = 18kg/m
v=10m/s m/2
r= 1.5 mm ¢ *
E;=100E 7 72
& vi=0.3 4 -
| EEEEEHEE: 5]
L/2 =50 mm >= 4 2
Plate: E=210GPa
H =2.1GPa
Oy =250 MPa
v =03
p = 7840 kg/m®

Fig. 4 Numerical model for impacted plate
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Fig. 6 Comparison of Mises stresses with ANSYS

Fig. 7 shows the time history of the contact force
for elastic and elasto-plastic cases. It is noted that there
exist more fluctuations, peak values for elastic contact
force. In the elasto-plastic analysis, the frequent
fluctuations vanish, maximum value decreased, and
contact duration time increased, which represent more
realistic results.

Fig. 8 shows the time history of the displacement
of the center of the plate. In the elastic analysis, it
oscillates, but in the elasto-plastic behavior of the plate,
the permanent strain appears.

Fig. 9 shows the time history of the equivalent stress
at the point A.

value is almost 10 times as large as that of the yield

In the elastic analysis, the maximum

stress. It is evident that the material is in pseudo-elastic
state, and it is unreal. The elasto-plastic analysis shows
the strain hardening behavior of the material after
yielding, and it is more realistic.

Numerical values of the plasticity effects on this
problem are summarized in Table 1. To investigate the
plasticity effect in the small deformation range, another
numerical calculations are executed by using the
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impactor which has the mass of 10 kg and various
velocities. The velocity of the impactor is limited so
that the maximum displacement does not exceed the
thickness of the plate. In Fig. 10, the impulses for the
elasto-plastic analysis and the elastic case are compared.
Plasticity effect is found in most range of small
deformation.

The impactor is treated as a rigid-body, and must
satisfy the impulse-momentum balance. Table 2 shows
impulse-momentum balance of the impactor for various

velocities.
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Fig. 7 Time history of contact force
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Fig. 8 Displacements of the center of the plate
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Table 1 Plasticity effects on the impact problem
Elastic Elasto Ratio
-Plastic (EP/E)
Impulse
(N¥sec) 351.8 221.2 0.629
Max. Contact
Load (kN) 2394 1106 0.462
Max. Displ.
of the Plate (mm) -1.903 1 -4.802 2.523
Contact Duration 0.605 | 1279 | 2114
(msec)
Final Velocity of the
Impactor (m/s) -9.54 -2.29 0.240
Max. Effective Stress
at the Point A (MPa) | 2260 | 2854 | 0.126

Table 2 Momentum and impulse for various impactor

velocities (m = 10 kg)
tmitial | mitial Elastic Elasto-Plastic
| ast | o s | [ e
_(kg*m/s) ‘ (kg*m/s)
1.25 12.5 -11.96 24.46 -11.96 24.46
2.5 25 -23.95 48.95 -16.15 41.15
5 50 -47.97 97.97 -21.23 71.23
7.5 75 -72.02 147.0 -24.72 99.72
10 100 -96.08 196.1 -26.65 126.7
12.5 125 -120.2 2452 -28.45 1534
15 150 -144.2 294.2 -31.45 181.5
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5. Conclusions

In this study, elasto-plastic dynamic behaviors of a
plate subjected to line-loading by a low-velocity
impactor are analyzed. Compared with elastic analysis,
the impacted plate with plastic behavior revealed as

follows:

Impulse decreases.

- Displacement increases.

- Contact duration time increases.
Stress is more realistic.

From numerical results for various impactor

velocities, it is concluded that material plasticity must
The
impact analysis approach in this study may be extended

be considered in low-velocity impact problems.
and applicable to other types of plate impact problems.
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