응력과 변형을 최소화하기 위한 단엽식 고분자 판막의 지지대 위치에 관한 연구

A Study on the Location of Supporting Members in Monoleaflet Polymer Valve to Minimize Stress and Deformation

  • 이성욱 (동아대학교 대학원 기계공학과) ;
  • 심재준 (동아대학교 대학원 기계공학과) ;
  • 한동섭 (동아대학교 대학원 기계공학과) ;
  • 한근조 (동아대학교 기계공학과) ;
  • 김태형 (경남정보대학 기계자동차산업계열)
  • 발행 : 2005.02.01

초록

A monoleaflet polymer artificial heart valve showed the remarkable improvement in pressure drop compared with other types of artificial valve. So, in this study we designed a monoleaflet polymer artificial valve with two supporting members to minimize the deformation and bending stress of the valve with respect to the variation of the gap between two supporting members using nonlinear contact analysis. The marginal valve thickness was also predicted in accordance with the relationship between the thickness and horizontal displacement in order to prevent the dislocation of the valve tip from the frame wall.

키워드

참고문헌

  1. Akutsu, T., Dreyer, B. and Kolff, W. C., 'Polyurethane Artificial Heart Valves in Animals,' J. Appl. Physiol., Vol. 14, pp. 1045-1048, 1959
  2. Chandran, K. B., Cabell, G. N., Khalighi, B. and Chen, C. J., ' Laser Anemometry Measurements of Pulsatile Flow Past Aortic Valve Prostheses,' J. Biomech., Vol. 16, pp. 865-873. 1983 https://doi.org/10.1016/0021-9290(83)90011-8
  3. Harold, M., Lo, H. B., Reul, H., Muchter, H., Tauchi, K., Giersiepen, M., Birkle, G., Holiweg, G., Rau, G. and Messmer, B. J., 'The Helmholtz Institute Trileaflet Polyurethane Heart Valve Prosthesis : Design, Manufacturing, and First In Vitro and In Vivo Results. Polyurethanes in Biomedical Engineering II,' Elsevier, pp. 321-356, 1987
  4. Hilbert, S. L. and Jones, M., 'Evaluation of Explanted Polyurethane Trileatlet Cardiac Valve Prosthesis,' J. Thorac. Cardiovasc. Surg., Vol. 94, pp. 419-429, 1987
  5. Yu, L. S., Yuan, B., Bishop, D., Topaz, S., Griensven, J. V., Hofma, S., Swier, P., Klinkmann, J., Kolff, J. and Kolff, W. J., 'New Polyurethane Valves in New Soft Artificial Hearts,' ASAIO Trans. Vol. 35, pp. 301-304, 1989 https://doi.org/10.1097/00002480-198907000-00040
  6. Jansen, J., Willeke, S., Reiners, B., Harbott, H., Reul, H., Lo, H. B., Dabritz, S., Rosenbaum, C., Bitter, A., Ziehe, K., Rau, G. and Messmer, B. J., 'Advanced in Design Principle and Fluid Dynamics of a Flexible Polymeric Heart Valve,' ASAIO Trans., Vol. 57, pp. 451-453, 1991
  7. Chandran, K. B., Lee, C. S., Shipkowitz, T., Chen, L. D., Yu, L. S. and Wurzel, D., 'In Vitro Hemodynamic Analysis of Flexible Artificial Ventricles,' Artificial Organs, Vol. 15, pp. 420-426, 1991
  8. Kim, S. H., Chandran, K. B. and Chen, C. J., 'Numerical Simulation of Steady Flow in a Two-Dimensional Total Artificial Heart Model,' J. Biomech. Eng. ASME, Vol. 114, pp. 497-503, 1992 https://doi.org/10.1115/1.2894101
  9. Kim, S. H., Kim, W. K., Jang, B. C. and Cho, B. K., 'A Simulative Circulation Test of Monoleaflet Polymer Valve,' Proc. of KOSOMBE, Vol. 15, pp. 51-53, May 1993
  10. Han, G. J., Ahn, S. C., Shim, J. J. and Kim, S. Y., 'Nonlinear Analysis of the Monoleaflet Polymer Valve according to Shape of Supporting Members,' J. KSPE, Vol. 20, No.3, pp. 120-124, 2003
  11. ANSYS User's Manual, ANSYS Inc., 1992
  12. Jung, S. J., 'Heat Transfer Analysis,' TSNE Inc., pp. 181-199, 2000