Effect of Initial Toluene Concentration on the Photooxidation of Toluene -NOx- Air Mixture - I. Change of Gaseous Species

초기 톨루엔 농도가 톨루엔 -NOx- 공기 혼합물의 광산화 반응에 미치는 영향 - I. 가스상 물질의 변화

  • 이영미 (한국과학기술연구원 대기자원센터) ;
  • 배귀남 (한국과학기술연구원 대기자원센터) ;
  • 이승복 (한국과학기술연구원 대기자원센터) ;
  • 김민철 (한국과학기술연구원 대기자원센터) ;
  • 문길주 (한국과학기술연구원 대기자원센터)
  • Published : 2005.02.01

Abstract

An experimental investigation of the gas-phase photooxidation of toluene-NO$_{x}$-air mixtures at sub-ppm concentrations has been carried out in a 6.9 m3, indoor smog chamber irradiated by blacklights. Measured parameters in the toluene-NO$_{x}$ experiments included $O_3$, NO, NO$_2$, NO$_{x}$, CO, SO$_2$ toluene, and air temperature. The initial toluene concentration ranged from 225 ppb to 991 ppb and the initial concentration ratio of toluene/NO$_{x}$ in ppbC/ppb was in the range of 5~20. It was found that the variation of gaseous species with irradiation time caused by the photooxidation of toluene-NO$_{x}$-air mixtures depended on the initial toluene concentration for similar concentration ratio of toluene/NO$_{x}$. The dependency of initial toluene concentration on the photooxidation of toluene-NO$_{x}$-air mixtures for toluene/NO$_{x}$=5~6 seemed to be opposite to that for toluene/NO$_{x}$=10~11. The arriving time at maximum ozone concentration depended on both initial toluene concentration and initial concentration ratio of toluene/NO$_{x}$. However, the maximum concentration of ozone formed by photooxidation depended only on the initial toluene concentration.luene concentration.

Keywords

References

  1. 문길주 등(2004) 스모그 챔버를 이용한 스모그 생성 메커니즘 규명. 한국과학기술연구원 보고서, M1-0204-00-0049 (UCN2595-7550-9)
  2. 박주연, 김용표 (2002) 서울시에서의 최적 오존 저감 대책: OZIPR을 이용한 사례 연구, 한국대기환경학회지, 18(5),427-433
  3. 배귀남, 김민철, 이승복, 송기범, 진현철, 문길주(2003) 실내 스모그 챔버의 설계 및 성능평가, 한국대기환경학회지, 19(4), 437-449
  4. 이영미, 배귀남, 이승복, 김민철, 문길주 (2005) 초기 톨루엔 농도가 톨루엔-$NO_{x}$ -공기 혼합물의 광산화 반응에 미치는 영향- II. 입자상 물질의 생성 및 성장, 한국대기환경학회지, 21(1), 27-38
  5. Atkinson, R. (1994) Gas-phase tropospheric chemistry of organic compounds, J. of Physical and Chemical Reference Data, Monograph, 2, 1-216
  6. Atkinson, R. (2000) Atmospheric chemistry of VOCs and $NO_{x}$ Atmospheric Environment, 34, 2063-2101
  7. Besemer, A.C. (1982) Formation of chemical compounds from irradiated mixtures of aromatic hydrocarbons and nitrogen oxides, Atmospheric Environment, 16(6), 1599-1602 https://doi.org/10.1016/0004-6981(82)90113-5
  8. Carter, W.P.L., A.M. Winer, and J.N. Pitts (1981) Major atmospheric sink for phenol and the cresols. Reaction with the nitrate radical, Environ. Sci. and Technol., 15, 829-831 https://doi.org/10.1021/es00089a009
  9. Dodge, M.C. (2000) Chemical oxidant mechanisms for air quality modeling: Critical review, Environ. Sci. and Technol., 34, 2103-2130
  10. Forstner, H.J., R.C. Flagan, and J.H. Seinfeld (1997) Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: Molecular composition, Environ. Sci. and Technol., 31, 1345-1358 https://doi.org/10.1021/es9605376
  11. Grosjean, D. (1985) Wall loss of gaseous pollutants in outdoor teflon chambers, Environ. Sci. and Technol., 19, 1059-1065 https://doi.org/10.1021/es00141a006
  12. Hurley, M.D., O. Sokolov, T.J. Wallington, H. Takekawa, M. Karasawa, B. Klotz, I. Barnes, and K.H. Becker (2001) Organic aerosol formation during the atmospheric degradation of toluene, Environ. Sci. and Technol., 35(7), 1358-1366 https://doi.org/10.1021/es0013733
  13. Izumi, K. and T. Fukuyama (1990) Photochemical aerosol formation from aromatic hydrocarbons in the presence of $NO_{x}$, Atmospheric Environment, 24A(6), 1433-1441
  14. Jang, M. and R.M. Kamens (2001) Characterization of secondary aerosol from the photooxidation of toluene in the presence of $NO_{x}$ and I-propene, Environ. Sci. and Technol., 35, 3626-3639 https://doi.org/10.1021/es010676+
  15. Jeffries, H.E. (1995) Composition Chemistry, and Climate of the Atmosphere, Van Nostrand Reinhold
  16. Killus, J.P. and G.Z. Whitten (1982) A mechanism describing the photochemical oxidation of toluene in smog, Atmospheric Environment, 16(8), 1973-1988 https://doi.org/10.1016/0004-6981(82)90468-1
  17. Leone, J.A., R.C. Flagan, D. Grosjean, and J.H. Seinfeld (1985) An outdoor smog chamber and modeling study of toluene-$NO_{x}$ photooxidation, Int. J. of Chemical Kinetics, 17, 177-216 https://doi.org/10.1002/kin.550170206
  18. Makert, F. and P. Pagsberg (1993) UV spectra and kinetics of radicals produced in the gas phase reactions of CI, F and OH with toluene, Chemical Physics Letters, 209, 445-454 https://doi.org/10.1016/0009-2614(93)80115-6
  19. Na, K.S. and Y. Kim (2001) Seasonal characteristics of ambient volatile organic compounds in Seoul, Korea, Atmospheric Environment, 35, 2603-2614 https://doi.org/10.1016/S1352-2310(00)00464-7
  20. Odum, J.R., T.P.W. Junkamp, R.J. Griffin, H.J.L. Forstner, R.C. Flagan, and J.H. Seinfeld (1997) Aromatics, reformulated gasoline, and atmospheric organic aerosol formation, Environ. Sci. and Technol., 31, 1890-1897 https://doi.org/10.1021/es960535l
  21. Seinfeld, J.H. and S.N. Pandis (1998) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons, Inc., pp.235-313
  22. Tuazon, E.C., H.M. Leod, R. Atkinson, and W.P.L. Carter (1986) $\alpha$-dicarbonyl yields from the $NO_{x}$-air photooxidations of a series of aromatic hydrocarbons in air, Environ. Sci. and Technol., 20(4), 383-387 https://doi.org/10.1021/es00146a010