DOI QR코드

DOI QR Code

Establishment and Operation of a Soil Moisture Monitoring System Considering Temporal and Spatial Features of Representation

시공간 대표성을 고려한 토양수분 모니터링 System의 구축 및 운영

  • 김기훈 (부산대학교 환경공학과) ;
  • 김상현 (부산대학교 공과대학 환경공학과) ;
  • 김형섭 (한국건설기술연구원) ;
  • 김원 (한국건설기술연구원)
  • Published : 2005.01.01

Abstract

A soil moisture measuring method of a hillslope for Korean watershed is developed to configure spatial-temporal distribution of soil moisture. Intensive surveying of topography had been performed to make a digital elevation model(DEM). Flow distribution algorithms were applied and a distribution pattern of the measurement sensors was determined to maximize representative features of spatial variation of soil moisture. Inverse surveying provides appropriate information to install the waveguides in the field. Measurements were performed at the right side hillslope of Bumrunsa located at the Sulmachun watershed. A multiplex monitoring system has been established and spatial-temporal variation of soil moisture data has been measured for a rainfall-runoff event. Acquired soil moisture data show that physical hydrologic interpretations as well as the effectiveness of monitoring system. Lack of connectivity in vertical distribution of soil moisture suggests that preferential flow and macropore flux are important components in the hillslope hydrology.

국내산지사면의 토양수분 시공간적 분포상황을 파악하기 위한 토양수분 측정법을 개발하였다. 대상유역을 정밀 측량하여 수치고도모형을 구성한 다음 흐름분배 알고리즘을 적용하였고 역측랑을 통한 대상 유역의 흐름분배 알고리즘의 유의성을 판단하였다. 이를 통한 공간적 변화의 대표성을 최대화하기 위한 장기 모니터링 시스템을 구축하였으며, 토양수분의 정확한 측정을 위해 TDR(Time Domain Reflectometry)을 이용하였다. 측정은 설마천 유역의 범륜사 우측사면에서 수행되었다. 강우사상에 의한 시공간적 토양수분의 변화 자료를 성공적으로 획득하였다. 획득된 토양수분자료는 측정시스템의 효용성과 사면유출의 과정에 대한 물리적인 과정을 나타낸다. 불연속적인 토양수분의 연직분포 양상은 사면 수문과정에서 선행흐름이나 대공극 흐름의 중요성을 의미한다.

Keywords

References

  1. 김상현, 김경현, 정선희 (20010. '수치 고도 분석 : 분포형 흐름 분배 알고리즘.' 한국수자원학회 논문집, 제34권, 제3호, pp. 241-251
  2. 한국건설기술연구원 (2003) '시험유역의 운영 및 수문특성 조사.연구', 연구보고서
  3. Ambroise B. (2004). 'Variable active versus contributing areas or periods: a necessary distinction.' Hydrological Processes. Vol. 18. pp. 1149-1155 https://doi.org/10.1002/hyp.5536
  4. Beven K, Germann P (1982). 'Macropores and Water Flow in Soils.' Water Resour. Res., vol. 18(5), pp. 1311-1325 https://doi.org/10.1029/WR018i005p01311
  5. O'Callaghan JF., Mark D.M. (1984). 'The extraction of drainage networks from digital elevation data.' Computer Vision, Graphics and Image Processing, vol. 28, pp. 323-344 https://doi.org/10.1016/S0734-189X(84)80011-0
  6. Pellenq J., Kalma J., Boulet G., Wooldrudge S., Kerr y., Chehbouni A. (2003). 'A disaggregation scheme for soil moisture based on topography and soil depth.' J. Hydrol., vol. 276, pp. 112-127 https://doi.org/10.1016/S0022-1694(03)00066-0
  7. Topp G.C., Davis J.L., Annan A.P. (1980). 'Electromagnetic determination of soil water content: measurements in coaxial transmission lines.' Water Resour. Res., vol. 16, pp. 574-582 https://doi.org/10.1029/WR016i003p00574
  8. Quinn, P., Beven K., Chevallier P., and Planchon O. (1991). 'The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models.' Hydrol. Process., vol. 5, pp. 59-79 https://doi.org/10.1002/hyp.3360050106
  9. Montgomery, D.R., Dietrich, W.E. (2002). 'Runoff Generation in a steep, soil-mantled landscape.' Water Resour. Res., Vol. 38, pp. 7-1-7-8 https://doi.org/10.1029/2001WR000822
  10. Uchida, T., Kosugi, K., Mizuyama, T. (2001). 'Effect of piperflow on hydrological process and its relation to landslide: a review of pipeflow studies in forested headwater catchments' Hydrogical Processes, Vol. 15, pp. 2151-2174 https://doi.org/10.1002/hyp.281
  11. Western, A. W., Bloschl, G, Grayson R. (1998). 'Geostatistical characterisation of soil moisture patterns in the Tarrawarra catchment.' J. Hydrol., vol. 205, pp. 20-37 https://doi.org/10.1016/S0022-1694(97)00142-X

Cited by

  1. Applicability Analysis of Water Provisioning Services Quantification Models of Forest Ecosystem vol.17, pp.4, 2014, https://doi.org/10.13087/kosert.2014.17.4.1