Er:YAG 레이저를 이용한 법랑질 및 상아질 와동 형성시의 치수내 온도변화

Intrapulpal Temperature Change during Cavity Preparation on the Enamel and Dentin with an Er:YAG Laser

  • 양희영 (단국대학교 치과대학 구강내과학교실, 단국대학교 의학레이저연구소) ;
  • 김미은 (단국대학교 치과대학 구강내과학교실, 단국대학교 의학레이저연구소) ;
  • 김기석 (단국대학교 치과대학 구강내과학교실, 단국대학교 의학레이저연구소)
  • Yang, Hee-Young (Department of Oral Medicine, College of Dentistry and Medical Laser Research Center, Dankook University) ;
  • Kim, Mee-Eun (Department of Oral Medicine, College of Dentistry and Medical Laser Research Center, Dankook University) ;
  • Kim, Ki-Suk (Department of Oral Medicine, College of Dentistry and Medical Laser Research Center, Dankook University)
  • 발행 : 2005.12.30

초록

본 연구의 목적은 법랑질과 상아질에서 와동을 형성하는 동안 치수벽에서 발생하는 온도변화를 관찰하여 치수 손상 가능성을 평가하고자 하였고 조사반복율의 차이에 따른 영향도 함께 조사하고자 하였다. 발거된 건전 대구치에 access cavity를 형성하고 레진 block에 식립한 다음, 온도측정센서를 레이저가 조사될 치수벽에 위치시켰다. 레이저를 조사하는 동안 분사되는 물이 온도변화에 영향을 주지 않도록 하기 위해 레진을 이용하여 occlusal cap을 만들고 가운데 작은 구멍을 내어 온도측정센서가 들어갈 수 있도록 하였으며 치아의 내부는 생리식염수로 채웠다. 치아표본은 법랑질실험군과 상아질 실험군으로 나누고 각 군당 치아표본수는 5개로 하였다. 상아질군에서는 모든 표본의 상아질 두께를 일정하게 하기 위하여, 고속핸드피스를 이용하여 상아질 두께가 2 mm가 되도록 삭제하여 사용하였다. $3\;mm{\times}2\;mm$의 일정한 면적을 치면에 표시한 다음 와동을 형성하였는데, 법랑질군에서는 상아질 이 노출되는 순간까지, 상아질군에서는 상아질벽이 천공되는 순간까지 온도변화를 조사하였다. 조사방식은 접촉식(contact mode)으로 하였으며 레이저가 한번 조사되는 시간을 3초 이하로 유지하면서 와동을 형성하였다. 300 mJ의 펄스 에너지, 10, 15, 20 Hz의 조사반복율, 1.6 ml/min의 물분사량이 가해지는 조건에서 레이저 조사측의 온도변화를 측정하였다. 본 연구의 결과에 따르면, Er:YAG 레이저 조사시 적절한 양의 물분사가 이루어질 때, 즉 1.6 ml/min의 물분사량과 300 mJ의 펄스에너지의 조건에서 법랑질에서 와동형성시 10, 15, 20 Hz 의 조사반복율 모두에서 온도상승이 미미하여 치수손상을 야기할 만한 온도상승이 이루어 지지 않았고 세 군 간의 유의한 차이도 존재하지 않았다(p=0.358). 상아질에서의 와동형성시에는 조사반복율이 증가할수록 온도상승이 컸지만(p=0.001), 실제 온도상승은 여전히 치수손상을 야기 하지 않는 안전한 범위에 있었다. 결론적으로 적절한 양의 물이 레이저 조사면에 적절하게 분사되기만 하면 법랑질이나 상아질에 서의 와동형성은 안전하게 시행할 수 있을 것으로 생각된다.

The purpose of our study was to investigate whether the intrapulpal temperature during cavity preparation of enamel or dentin with Er:YAG laser still remained in range of safety for dental pulp protection when combined with appropriate water flow rate. The effect of different pulse repetition rates at the same pulse energy during ablation was evaluated as well. Caries-free, restoration-free extracted human molar teeth were prepared for the specimen and divided two experimental groups of enamel and dentin. Each group comprised 5 specimens and each of tooth specimens were embedded into a resin block each and measuring probe was placed on the irradiated pulpal walls. For experiments of dentin ablation, enamel layers were prepared to produce dentin specimen with a same dentin thickness of 2 mm. A pulse energy of Er:YAG laser was set to 300 mJ and three different pulse repetition rates of 20 Hz, 15 Hz and 10 Hz were employed. Laser beam was delivered with 3 seconds and less per application over enamel and dentin surfaces constant sized by $3\;mm{\times}2\;mm$ and water spray added during irradiation was a rate of 1.6 ml/min. Temperature change induced by Er:YAG laser irradiation was monitored and recorded While enamel was ablated, there was no significant difference of temperature related to pulse repetition rates(p=0.358) and temperature change at any pulse repetition rate was negligible. Significant statistical difference in temperature changes during cavity preparation in dentin existed among three different pulse groups(p=0.001). While temperature rise was noticeable when the dentinal wall was perforated, actual change of temperature due to Er:YAG laser irradiation was not enough to compromise safety of dental pulp when irradiation was conjugated with appropriate water spray. Conclusively, it can be said that cavity preparation on enamel or dentin with an Er:YAG laser is performed safely without pulp damage if appropriate volume of water is sprayed properly over the irradiated site.

키워드

참고문헌

  1. Maiman TH. Stimulated optical radiation in ruby. Nature 1960;187:493-494 https://doi.org/10.1038/187493a0
  2. Hibst R, Keller U. Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate. Laser Surg Med 1989;9:338-344 https://doi.org/10.1002/lsm.1900090405
  3. Hibst R, Keller U. Experimental studies of the application of the Er:YAG laser on dental hard substances: II. Light microscopic and SEM investigations. Laser Surg Med 1989;9:345-351 https://doi.org/10.1002/lsm.1900090406
  4. Dostalova T, Jelinkova H, Kucerova H et al. Noncontact Er:YAG laser ablation: Clinical evaluation. J Clin Lasers Surg Med 1998;16:273-282
  5. Keller U, Hibst R, Geurtsen W, et al. Erbium:YAG laser application in caries therapy: evaluation of patient perception and acceptance. J Dent 1998;26: 649-656 https://doi.org/10.1016/S0300-5712(97)00036-5
  6. Moriya K, Kato J, Takagi Y. A clinical application of Er:YAG laser for restorative dentistry in children. Proceedings of the 6th International Congress on Lasers in Dentistry 1998, pp.199-201
  7. Jayawardena JA, Kato J, Moriya K, Takagi Y. Pulpal response to exposure with Er:YAG laser. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001;91:222-229 https://doi.org/10.1067/moe.2001.111943
  8. Keller U, Hibst R. Effects of Er:YAG laser in caries treatment : A clinical pilot study. Lasers Surg Med 1997;20:32-38 https://doi.org/10.1002/(SICI)1096-9101(1997)20:1<32::AID-LSM5>3.0.CO;2-#
  9. Evans DJP, Mattews S, Pitts NB, Longbottom C, Nugent ZJ. A clinical evaluation of an Erbium:YAG laser for dental cavity preparation. Br Dent J 2000;188:677-679 https://doi.org/10.1038/sj.bdj.4800575a
  10. Patel BCM, Rickwood KR. Morphological changes induced by short pulse hydrogen fluoride laser radiation on dental hard tissue and restorative materials. Laser Surg Med 1997;21:1-6 https://doi.org/10.1002/(SICI)1096-9101(1997)21:1<1::AID-LSM1>3.0.CO;2-U
  11. Pelagalli J, Gimbel CB, Hansen RT, Swett A, Winn DW. Investigational study of the use of Er:YAG laser versus dental drill for caries removal and cavity preparation-phase I. J Clin Laser Med Surg 1998;15: 109-115
  12. Sonntag KD, Ktzman B, Burkes J, Hoke J, Moshonov J. Pulpal response to cavity preparation with the Er:YAG and Mark III free electron lasers. Oral Surg Oral Med Oral Pathol Oral Raiol Endod 1996;81:695-702 https://doi.org/10.1016/S1079-2104(96)80076-X
  13. Cozean C, Arcoria CJ, Pelagalli J et al. Dentistry for the 1st century? Erbium:YAG laser for teeth. J Am Dent Assoc 1997;128:1080-1087 https://doi.org/10.14219/jada.archive.1997.0364
  14. Eversole LR, Rizoiu I, Kimmel Al. Pulpal response to cavity preparation by an erbium, chromium:YSGG laser-powered hydrokinetic system. J Am Dent Assoc 1997;128 :1099-1106 https://doi.org/10.14219/jada.archive.1997.0367
  15. Kim JM, Kim ME, Kim KS. Ablation rate and intrapulpal temperature by irradiation with Er:YAG laser. Korean J Oral Med 2005;30: 375-381
  16. Kim KS, Kim ME, Shin EJ, Jo CH. Irradiation time and ablation rate of enamel in contact and non-contact irradiation with Er:YAG laser. Photomedicine and Laser Surgery 2005;23:216-218 https://doi.org/10.1089/pho.2005.23.216
  17. Paghdiwala AF, Vaidyanathan TK, Paghdiwala MF. Evaluation of Er:YAG laser radiation of hard dental tissues : analysis of temperature changes, depth of cuts and structural defects. Scanning Microsc 1993;7:983-997
  18. Burkes EJ, Hoke J, Gomes E, Wolbarsht M. Wet versus dry enamel ablation by Er:YAG laser. J Prosthet Dent 1992;67:847-851 https://doi.org/10.1016/0022-3913(92)90599-6
  19. Wolbarsht M. Laser surgery; CO2 or HF. IEEE J. Quantum Electronics QE-20. 1984;12:1427-1432
  20. Armengol V, Jean A, Marion D. Temperature rise during Er:YAG and Nd:YAP laser ablation of dentin. J Endod 2000;26:138-141 https://doi.org/10.1097/00004770-200003000-00002
  21. Hibst R, Keller U. Effects of water spray and repetition rate on temperature elevation during Er:YAG laser ablation of dentin. SPIE 1996;2623: 139-144
  22. Kim ME, Jeoung DJ, Kim KS. Effects of water flow on dental hard tissue ablation using Er:YAG laser. J Clin Laser Med Surg 2003;21:139-144 https://doi.org/10.1089/104454703321895581
  23. Li Z-z, Code JE, Van De Merwe, WP. Er:YAG laser ablation of enamel and dentin of human teeth: Determination of ablation rates at various fluences and pulse repetition rates. Lasers Surg Med 1992;12: 625-630 https://doi.org/10.1002/lsm.1900120610
  24. Zach L, Cohen G. Pulp responses to externally applied heat. Oral Surg Oral Med Oral Path 1965;19:515-530 https://doi.org/10.1016/0030-4220(65)90015-0
  25. Selzer S, Bender I. Biologic considerations in dental procedures. 3rd ed. The dental pulp. Philadelphia, 1990, Lippincott, pp.200-201
  26. Powell L, Morton TH, Whitsenant BK. Argon laser oral safety parameters. Lasers Surg Med 1993;13: 548-555 https://doi.org/10.1002/lsm.1900130509
  27. Erickson RL. Adhesive dental materials. In Transactions of the Intrnational Congress on Dental Materials. Joint meeting of the Academy of dental materials and Japanese Society for Dental Material and Devices. 1989, pp.55-69
  28. Park NS, Kim ME, Kim KS. The changes of intrapulpal temperature after Er:YAG laser irradiation.(In preparation)