참고문헌
-
Atkinson, M. M., Mildland, S. L., Sims, J. J. and Keen, N. T. 1996. Syringolide triggers
$Ca^{2+}$ influx,$K^{+}$ efflux, and extracellular alkalization in soybean cells carrying the disease resistance gene rpG4. Plant Physiol. 112:297-302 https://doi.org/10.1104/pp.112.1.297 - Bendahmane, A., Kanyuka, K. and Baulcombe, D. C. 1999. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11 :781-791 https://doi.org/10.1105/tpc.11.5.781
- Bent, A. 1996. Plant disease resistance genes: Function meets structure. Plant Cell 8: 1757-1771 https://doi.org/10.1105/tpc.8.10.1757
- Bestwick, C. S., Bennet, M. H. and Mansfield, J. W. 1995. Hrp mutant of Pseudomonas syringae pv. Phaseolicola induces alterations but not membrane damage leading to the hypersensitive reaction in lettuce. Plant Physiol. 108:503-516 https://doi.org/10.1104/pp.108.2.503
- Buchanan-Wollaston, V. 1997. The molecular biology of leaf senescence. J. Exp. Bot. 48:181-199 https://doi.org/10.1093/jxb/48.2.181
- Delledonne, M., Zeier, J., Marocco, A. and Lamb, C. 2001. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl. Acad. Sci. USA 98:13454-13459
- Dixon, M. S., Hatzixanthis, K., Jones, D. A., Harrison, K. and Jones, J. D. G 1998. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell 10:1915-1925 https://doi.org/10.1105/tpc.10.11.1915
- Elbaz, M., Avni, A. and Weil, M. 2002. Constitutive caspase-like machinery executes programmed cell death in plant cells. Cell Death Differ 9:726-733 https://doi.org/10.1038/sj.cdd.4401030
- Ellingboe, A. H. 1980. Changing concepts in host-pathogen genetics. Annu. Rev. Phytopathol. 19:125-143 https://doi.org/10.1146/annurev.py.19.090181.001013
- Flor, H. H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275-296 https://doi.org/10.1146/annurev.py.09.090171.001423
- Green, D. R. and Reed, J. C. 1998. Mitochondria and apoptosis. Science 281: 1309-1312 https://doi.org/10.1126/science.281.5381.1309
- Graham, T. L. and Graham, M. Y. 1999. Role of hypersensitive cell death in conditioning elicitation competency and defense potentiation. Physiol. Mol. Plant Path. 55: 13-20 https://doi.org/10.1006/pmpp.1999.0179
- Heath, M. C. 1998. Apoptosis, programmed cell death and the hypersensitive response. Eur. J. Plant Path. 104: 117-124 https://doi.org/10.1023/A:1008645520976
- Jia, Y., McAdams, S. A., Bryan, G. T., Hershey, H. P. and Valent, B. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19:4004-4014 https://doi.org/10.1093/emboj/19.15.4004
- Lam, E., Kato, N. and Lawton, M. 2001. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411 :848-853 https://doi.org/10.1038/35081184
- Leister, R. T. and Katagiri, F. 2000. A resistance gene product of the nucleotide binding site-leucine rich repeats class can form a complex with bacterial avirulence proteins in vivo. Plant J. 22:345-354 https://doi.org/10.1046/j.1365-313x.2000.00744.x
- Levine, A., Pennell, R. I., Alvarez, M. E., Palmer, R. and Lamb, C. 1996. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr. Biol. 6:427-437 https://doi.org/10.1016/S0960-9822(02)00510-9
- Lincoln, J. E., Richael, C., Overduin, B., Smith, K., Bostock, R. and Gilchrist, D. G. 2002. Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease. Proc. Natl. Acad. Sci. USA 99:15217-15221 https://doi.org/10.1073/pnas.232579799
- Mittler, R., Simon, L. and Lam, E. 1997. Pathogen-induced programmed cell death in tobacco. J. Cell Sci. 110: 1333-1344
- Pontier, D., Gan, S., Amasino, R. M., Roby, D. and Lam, E. 1999. Markers for hypersensitive response and senescence show distinct patterns of expression. Plant Mol. Biol. 39: 1243-1255 https://doi.org/10.1023/A:1006133311402
- del Pozo, O. and Lam, E. 2003. Expression of the baculovirus p35 protein in tobacco affects cell death progression and compromises N gene-mediated disease resistance response to tobacco mosaic virus. Mol. Plant-Microbe Interact. 16:485-494 https://doi.org/10.1094/MPMI.2003.16.6.485
- Richael, C. and Gilchrist, D. 1999. The hypersensitive response: a case of hold or fold? Physiol. Mol. Plant Path. 55:5-12 https://doi.org/10.1006/pmpp.1999.0209
- Ryerson, D. E. and Heath, M. C. 1996. Cleavage of nuclear DNA into oligonucleosomal fragments during cell death induced by fungal infection or be abiotic treatments. Plant Cell 8:393-402 https://doi.org/10.1105/tpc.8.3.393
- Scofield, S. R., Tobias, C. M., Rathjen, J. P., Chang, J. H., Lavelle, D. T., Michelmore, R. W. and Staskawicz, B. J. 1996. Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274:2063-2065 https://doi.org/10.1126/science.274.5295.2063
- Seo, S., Okamoto, M., Iwai, T., Iwano, M., Fukui, K., Isogai, A., et al. 2000. Reduced levels of chloroplast FtsH protein in tobacco mosaic virus-infected tobacco leaves accelerate the hypersensitive reaction. Plant Cell 12:917-932 https://doi.org/10.1105/tpc.12.6.917
- Shao, F., Golstein, C, Ade, J., Stoutemyer, M., Dixon, J. E. and Innes, R. W. 2003. Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301: 1230-1233 https://doi.org/10.1126/science.1085671
- Tang, X., Frederick, R. D., Zhou, J., Halterman, D. A., Jia, Y. and Martin, G. B. 1996. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274: 2060-2063 https://doi.org/10.1126/science.274.5295.2060
- Torres, M. A., Dangl, J. L. and Jones, J. D. G 2002. Arabidopsis gp91 phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99:517-522 https://doi.org/10.1073/pnas.012452499
- Wakabayashi, Y. and Karbowski, M. 2001. Structural changes of mitochondria related to apoptosis. Biol. Signals Recept. 10:26-56 https://doi.org/10.1159/000046874
- Wendehenne, D., Lamotte, O., Frachisse, J.-M., Barbier-Brygoo, H. and Pugin, A. 2002. Nitrate efflux is an essential component of the cryptogein signaling pathway leading to defense responses and hypersensitive cell death in tobacco. Plant Cell 14:1937-1951 https://doi.org/10.1105/tpc.002295
- Yang, Y., Shah, J. and Klessig, D. 1997. Signal perception and transduction in plant defense responses. Genes Dev. 11:1621-1639 https://doi.org/10.1101/gad.11.13.1621
- Zhang, C., Czymmek, L. J. and Shapiro, A. D. 2003. Nitric oxide does not trigger early programmed cell death events but may contribute to cell-to-cell signaling governing progression of the Arabidopsis hypersensitive response. Mol. Plant-Microbe Interact. 16:962-972 https://doi.org/10.1094/MPMI.2003.16.11.962
피인용 문헌
- Distinct roles of the pepper hypersensitive induced reaction protein gene CaHIR1 in disease and osmotic stress, as determined by comparative transcriptome and proteome analyses vol.227, pp.2, 2007, https://doi.org/10.1007/s00425-007-0628-6
- The Hypersensitive Induced Reaction and Leucine-Rich Repeat Proteins Regulate Plant Cell Death Associated with Disease and Plant Immunity vol.24, pp.1, 2011, https://doi.org/10.1094/MPMI-02-10-0030
- Characterization of a Hypersensitive Response-Induced Gene TaHIR3 from Wheat Leaves Infected with Leaf Rust vol.31, pp.2, 2013, https://doi.org/10.1007/s11105-012-0504-9
- Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance vol.61, pp.6, 2006, https://doi.org/10.1007/s11103-006-0057-0
- Functional roles of the pepper antimicrobial protein gene, CaAMP1, in abscisic acid signaling, and salt and drought tolerance in Arabidopsis vol.229, pp.2, 2009, https://doi.org/10.1007/s00425-008-0837-7
- A subset of cells in tobacco mosaic virus (TMV)-induced local lesions in Datura stramonium leaves are tolerant to TMV vol.5, pp.1, 2011, https://doi.org/10.1134/S1990519X11010135
- Overexpression of theMalus hupehensisMhTGA2Gene, a Novel bZIP Transcription Factor for Increased Tolerance to Salt and Osmotic Stress in Transgenic Tobacco vol.173, pp.5, 2012, https://doi.org/10.1086/665262
- Enhanced resistance to bacterial and fungal pathogens by overexpression of a human cathelicidin antimicrobial peptide (hCAP18/LL-37) in Chinese cabbage vol.6, pp.1, 2012, https://doi.org/10.1007/s11816-011-0193-0
- Functional analysis of plant NB-LRR gene L3 by using E. coli vol.478, pp.4, 2016, https://doi.org/10.1016/j.bbrc.2016.08.154
- SP-LL-37, human antimicrobial peptide, enhances disease resistance in transgenic rice vol.12, pp.3, 2017, https://doi.org/10.1371/journal.pone.0172936
- Infection of soybean by cucumber mosaic virus as determined by viral movement protein vol.152, pp.2, 2007, https://doi.org/10.1007/s00705-006-0847-3
- Enhanced resistance to bacterial pathogen in transgenic tomato plants expressing cathelicidin antimicrobial peptide vol.18, pp.3, 2013, https://doi.org/10.1007/s12257-013-0392-3
- Effects of the leaf rust pathogen on expression of TaHIR4 at the gene and protein levels in wheat vol.8, pp.4, 2013, https://doi.org/10.1080/17429145.2013.823247
- Identification and functional expression of the pepper pathogen-induced gene, CAPIP2, involved in disease resistance and drought and salt stress tolerance vol.62, pp.1-2, 2006, https://doi.org/10.1007/s11103-006-9010-5
- Functional analysis of the promoter of the pepper pathogen-induced gene, CAPIP2, during bacterial infection and abiotic stresses vol.172, pp.2, 2007, https://doi.org/10.1016/j.plantsci.2006.08.015
- Xanthomonas campestrispv.vesicatoriaEffector AvrBsT Induces Cell Death in Pepper, but Suppresses Defense Responses in Tomato vol.23, pp.8, 2010, https://doi.org/10.1094/MPMI-23-8-1069
- Genome-wide analysis of the PHB gene family in Glycine max (L.) Merr. vol.39, pp.10, 2017, https://doi.org/10.1007/s13258-017-0580-1
- Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses vol.224, pp.5, 2006, https://doi.org/10.1007/s00425-006-0302-4
- Role of a novel pathogen-induced pepper C3–H–C4 type RING-finger protein gene, CaRFP1, in disease susceptibility and osmotic stress tolerance vol.63, pp.4, 2007, https://doi.org/10.1007/s11103-006-9110-2