The Improvement of High Convergence Speed using LMS Algorithm of Data-Recycling Adaptive Transversal Filter in Direct Sequence Spread Spectrum

직접순차 확산 스펙트럼 시스템에서 데이터 재순환 적응 횡단선 필터의 LMS 알고리즘을 이용한 고속 수렴 속도 개선

  • 김광준 (여수대학교 컴퓨터공학과) ;
  • 윤찬호 (조선대학교 컴퓨터공학과) ;
  • 김천석 (여수대학교 전자통신공학과)
  • Published : 2005.02.01

Abstract

In this paper, an efficient signal interference control technique to improve the high convergence speed of LMS algorithms is introduced in the adaptive transversal filter of DS/SS. The convergence characteristics of the proposed algorithm, whose coefficients are multiply adapted in a symbol time period by recycling the received data, is analyzed to prove theoretically the improvement of high convergence speed. According as the step-size parameter ${\mu}$ is increased, the rate of convergence of the algorithm is controlled. Also, an increase in the stop-size parameter ${\mu}$ has the effect of reducing the variation in the experimentally computed learning curve. Increasing the eigenvalue spread has the effect of controlling which is downed the rate of convergence of the adaptive equalizer. Increasing the steady-state value of the average squared error, proposed algorithm also demonstrate the superiority of signal interference control to the filter algorithm increasing convergence speed by (B+1) times due to the data-recycling LMS technique.

본 논문에서 직접순차 확산 스펙트럼 시스템의 적응 횡단선 필터에서 LMS 알고리즘의 수렴 속도를 향상시키기 위한 효율적인 신호간섭 제어기법을 제안한다. 수신 데이터를 재순환하여 심볼 시간주기에 계수들을 곱함으로써 적응되는 제안된 알고리즘의 수렴특성이 수렴 속도의 향상을 이론적으로 증명하기 위해 분석한다. 스텝-크기 매개변수 ${\mu}$가 증가됨에 따라 알고리즘의 수렴 속도가 제어된다. 또한, 스텝-크기 매개변수 ${\mu}$의 증가는 실험적으로 계산된 학습 곡선에서 분산을 감소시키는 효과를 갖는다. 고유치 확산을 증가시킴에 따라 즉응 등화기의 수렴속도를 천천히 제어하고 평균 자승 에러의 안정-상태 값을 증가시키는 효과를 나타내며 데이터-재사용 LMS 기술이 수렴속도를 (B+1)배만큼 증가시켜 필터 알고리즘에서 신호간섭제어의 우수성을 입증한다.

Keywords

References

  1. Po-An Sung, Kwang-Cheng Chen, 'A Linear Minimum Mean Square Error Mul tiuser Receiver in Rayleigh-Fading Channels', IEEE J. Select. Areas Commun., Vol.14, No.8, pp.1583-1593, Oct. 1996 https://doi.org/10.1109/49.539412
  2. Jiangzhou Wang, Laurence 2. Milstein, 'Adaptive LMS Filters for Cellular CDMA Overlay Situation', IEEE J. Select. Areas Commun., Vol.14, No.8, pp.1548-1559, Oct. 1996 https://doi.org/10.1109/49.539408
  3. Simon Haykin, 'Adaptive Filter Theory: Third Edition', Prentice Hall International Editions, pp.365-439, 1996
  4. B. Widrow, Adaptive Signal Processing, Prentice-Hall, 1985
  5. S. U. H Qureshi, 'Adaptive Equalization,' Proc. IEEE, vol. 73, No.9, pp.1349-1387, Sep. 1985
  6. Nam Yong Kim, Chang Eon Kang, 'An LMS Tapped Delay Line Equalizer using Each Tap Adaptation,' Submitted to IEEE Trans. on. Comm
  7. Jiangnan Chen, Roland Priener, 'An Inequality by Which to Adjust the LMS Algorithm Step-Size', IEEE Trans. Commun. Vol.43, No.2/3/4, pp.1477-1483, Feb./Mar./ Apr. 1995 https://doi.org/10.1109/26.380197
  8. Satorius, E. H. and Pack, J. D., 'Application of Least squares Lattice Algorithms to Adaptive Equalization,' IEEE Trans. Communications, vol. COM-29, pp.136-142, February 1981
  9. Satorius, E. H. and Pack, J. D., 'Application of Least squares Lattice Algorithms to Adaptive Equalization,' IEEE Trans. Communications, vol. COM-29, pp.136-142, February 1981
  10. Bergmans, J.W.M.,'Tracking capabilities of the LMS adaptive filter in the presence of gain variations,' IEEE Trans. Acoust. Speech Signal Process. vol.38, pp. 712-714, 1990 https://doi.org/10.1109/29.52711
  11. J. Shynk and S. Roy, 'Convergence properties and stationary points of a perceptron learning algorithm,' Proceedings of the IEEE, vol. 78, pp, 1599-1604, Oct. 1990
  12. A. Gersho, 'Adaptive equalization of high dispersive channels for data transmission,' B.S.T.J., vol. 48, pp. 55-70, Jan. 1969