DOI QR코드

DOI QR Code

Invisible Signals from the Underground: Bacterial Volatiles Elicit Plant Growth Promotion and Induce Systemic Resistance

  • Published : 2005.01.01

Abstract

Plant growth-promoting rhizobacteria (PGPR) are a wide range of root-colonizing bacteria with the capacity to enhance plant growth and control plant pathogens. Here we review recent progress that indicate some PGPR strains release a blend of volatile organic compounds (VOCs) that promote growth in Arabidopsis seedlings and induce resistance against Erwinia carotovora subsp. carotovora. In particular, the volatile components 2,3-butanediol and acetoin released exclusively from the PGPR strains triggered the greatest level of growth promotion and induced systemic resistance. Pharmacological applications of 2,3-butanediol promoted the plant growth and induced resistance, while bacterial mutants blocked in 2,3-butanediol and acetoin synthesis was devoid of growth-promotion and induced resistance capacities. The results suggested that the bacterial VOCs play a critical role in the plant growth promotion and induced resistance by PGPR. Using transgenic and mutant lines of Arabidopsis, we provide evidences that the signal pathway activated by volatiles from one PGPR strain is dependent on cyto-kinin activation for growth promotion and dependent on an ethylene-signaling pathway for induced pathogen resistance. This discovery provides new insight into the role of bacterial VOCs as initiators of both plant growth promotion and defense responses in plants.

Keywords

References

  1. Arimura, G. I., Ozawa, R., Shimoda, T., Nishioka, T., Boland, W. and Takabayashi, J. 2000. Herbivory-induced volatiles elicit defense genes in lima bean leaves. Nature 406:512-515 https://doi.org/10.1038/35020072
  2. Bate, N. J. and Rothstein, S. J. 1998. $C_6$-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J. 16:561-569 https://doi.org/10.1046/j.1365-313x.1998.00324.x
  3. Bleeker, A. B. and Kende, H. 2000. Ethylene: a gaseous signal molecule in plant. Annu. Rev. Cell Dev. Biol. 16:1-18 https://doi.org/10.1146/annurev.cellbio.16.1.1
  4. Codero, M. J., Raventos, D. and SanSegundo, B. 1994. Expression of a maize proteinase inhibitor gene is induced in response to wounding and fungal infection-systemic woundresponse of a monocot gene. Plant J. 6:141-150 https://doi.org/10.1046/j.1365-313X.1994.6020141.x
  5. Croft, K. P. C., Juttner, F. and Slusarenko, A. J. 1993. Volatile products of the lipoxygenase pathway evolved from Phaseolus- vulgaris (L) leaves inoculated with Pseudomonas-Syringae PV-phaseolicola. Plant Physiol. 101:13-24
  6. Conrath, U., Pieterse, C. M. J. and Mauch-Mani, B. 2002. Priming in plant-pathogen interactions. Trends Plant Sci. 7:210- 216 https://doi.org/10.1016/S1360-1385(02)02244-6
  7. Doughty, K. J., Kiddle, G. A., Pye, B. J., Wallsgrove, R. M. and Pickett, J. A. 1995. Selective induction of glucosinolates in oilseed rape leaves by methyl jasmonate. Phytochemistry 38: 347-350 https://doi.org/10.1016/0031-9422(94)00653-B
  8. Durrant, W. E. and Dong, X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42:185-209 https://doi.org/10.1146/annurev.phyto.42.040803.140421
  9. Farag, M. A. and Pare, P. W. 2002. $C_6$-Green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 61:545-554 https://doi.org/10.1016/S0031-9422(02)00240-6
  10. Farmer, E. E. and Ryan, C. A. 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87:7713- 7716 https://doi.org/10.1073/pnas.87.19.7713
  11. Gardener, H. W., Dornbos, D. L. and Desjardins, A. 1990. Hexanal, trans-2-hexenal, and trans-2-nonenal inhibit soybean, Glycine max, seed germination. J. Agric. Food Chem. 38:1316- 1320 https://doi.org/10.1021/jf00096a005
  12. Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microiol. 41:109-117 https://doi.org/10.1139/m95-015
  13. Glick, B. R. 1999. In Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria, ed. Glick BR, Patten CN, Holguin G, Penrose DM (Imperial College Press, London) pp. 1-13
  14. Hatanaka, A., Kajiwara, T. and Sekiya, J. 1987. Biosynthesis pathway for $C_6$-aldehydes formation from linolenic acid in green leaves. Chem. Phys. Lipids 44:341-361 https://doi.org/10.1016/0009-3084(87)90057-0
  15. Hildebrand, D. F., Brown, G. C., Jackson, D. M. and Hamilton, T. R. 1993. Effect of some leaf emitted volatiles compounds on aphid population increase. J. Chem. Ecol. 19:1875-1887 https://doi.org/10.1007/BF00983793
  16. Iavicoli, A., Boutet, E., Buchala, A. and Méraux, J-P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root Inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16:851-858 https://doi.org/10.1094/MPMI.2003.16.10.851
  17. Kloepper, J. W., Zablotowicz, R. M., Tipping, E. M. and Lifshitz, R. 1991. In. The Rhizosphere and Plant Growth. eds. Keister, K.L. & Cregan, P.B. Kluwer (Academic Publishers, Dordecht) pp. 315-326
  18. Kloepper, J. W. 1992. Plant growth-promoting rhizobacteria as biological control agents. In: Soil microbial ecology: applications in agricultural and environmental management. ed by Metting FB Jr., Marcel Dekker Inc., NY, USA 255-274
  19. Kloepper, J. W., Rodriguez-Kabana, R., Zehnder, G. W., Murphy, J., Sikora, E. and Fernandez, C. 1999. Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Austral. Plant Pathol. 28:27-33 https://doi.org/10.1071/AP99004
  20. Kloepper, J. W., Ryu, C.-M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266 https://doi.org/10.1094/PHYTO.2004.94.11.1259
  21. Liu, L., Kloepper, J. W. and Tuzun, S. 1995. Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85: 843-847 https://doi.org/10.1094/Phyto-85-843
  22. Murphy, J. F., Reddy, M. S., Ryu, C.-M. Kloepper, J. W. and Li. R. 2003. Rhizobacteria-Mediated Growth Promotion of Tomato Leads to Protection Against Cucumber mosaic virus. Phytopathology 93:1301-1307 https://doi.org/10.1094/PHYTO.2003.93.10.1301
  23. Mysore, K. S. and Ryu, C.-M. 2004. Nonhost resistance: How much do we know? Trends in Plant Science 9:97-104 https://doi.org/10.1016/j.tplants.2003.12.005
  24. Pare, P. W. and Tumlinson, J. H. 1999. Plant volatiles as a defense against insect herbivores. Plant Physiol. 121:325-331 https://doi.org/10.1104/pp.121.2.325
  25. Pieterse, C. M. J., Van Wees, S. C. M., Hoffland, E., Van Pelt, J. A. and Van Loon, L. C. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225-1237 https://doi.org/10.1105/tpc.8.8.1225
  26. Pieterse, C. M. J., Van Wees, S. C. M., Ton, J., Van Pelt, J. A. and Van Loon, L. C. 2002. Signaling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol. 4:535- 544 https://doi.org/10.1055/s-2002-35441
  27. Ramos, H. C., Hoffmann, T., Marino, M., Nedjari, H., Presecan- Siedel, E., Dreesen, O., Glaser, P. and Jahn, D. 2000. Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. J. Bacteriol. 182:3072-3080 https://doi.org/10.1128/JB.182.11.3072-3080.2000
  28. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8:1809-1819 https://doi.org/10.1105/tpc.8.10.1809
  29. Ryu, C-M., Farag, M. A., Hu, C-H., Reddy, M. S., Wei, H. X., Paré, P. W. and Kloepper, J. W. 2003a. Bacterial Volatiles Promote Growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100: 4927-4932
  30. Ryu, C-M., Hu, C. H., Reddy, M. S. and Kloepper, J. W. 2003b. Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytologist. 160:413-420 https://doi.org/10.1046/j.1469-8137.2003.00883.x
  31. Ryu, C-M., Farag, M., Hu, C. H., Reddy, M. S., Pare, P. and Kloepper, J. W. 2004a. Volatile Emission from Rhizobacteria elicite induced systemic resistance in Arabidopsis thaliana. Plant Physiol. 134:1017-1026 https://doi.org/10.1104/pp.103.026583
  32. Ryu, C-M., Murphy, J. F., Mysore, K. S. and Kloepper, J. W. 2004b. Plant growth-promoting rhizobacteria protect systemically Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic aciddependent signaling pathway. Plant J. 39:381-392 https://doi.org/10.1111/j.1365-313X.2004.02142.x
  33. Ryu, C-M., Hu, C. H., Locy, R. D. and Kloepper, J. W. 2004c. Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant and Soil (in press)
  34. Timmusk, S., Nicander, B., Granhall, U. and Tillberg, E. 1999. Cytokinin production by Paenibacillus polymyxa. Soil Biol. Biochem. 31:1847-1852 https://doi.org/10.1016/S0038-0717(99)00113-3
  35. Ton, J., Van Pelt, J. A., Van Loon, L. C. and Pieterse, C. M. J. 2002. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant-Microbe Interact. 15:27-34 https://doi.org/10.1094/MPMI.2002.15.1.27
  36. Van Loon, L. C., Bakker, P. A. H. M. and Pierterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Ann. Rev. Phytopath. 36:453-483 https://doi.org/10.1146/annurev.phyto.36.1.453
  37. Wei, G., Kloepper, J. W. and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508-1512 https://doi.org/10.1094/Phyto-81-1508
  38. Weidhase, R. A., Kramell, H. M., Lehmann, J., Leibisch, H. W., Lerbs, W. and Parthier, B. 1987. Methyl jasmonate-induced changes in the polypeptide pattern of senescing barley leaf segments. Plant Science 51:177-186 https://doi.org/10.1016/0168-9452(87)90191-9
  39. Zehnder, G. W., Yao, C., Murphy, J. F., Sikora, E. R., Kloepper, J. W., Schuster, D. J. and Polston, J. E. 1999. Microbe-induced resistance against pathogens and herbivores: evidence of effectiveness in agriculture, In: Induced plant defenses against pathogens and herbivores: biochemistry, ecology and agriculture, A. A. Agrawal, et al. eds APS Press, St. Paul, MN. pp 335-355
  40. Zeringue, H. J. 1992. Effects of $C_6$-$C_{10}$ alkenals and alkanals on eliciting a defense response in the developing cotton ball. Phytochemistry 3:2305-2308

Cited by

  1. Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv. vol.15, pp.1, 2015, https://doi.org/10.1186/s12870-015-0585-3
  2. Comparative Digital Gene Expression Analysis of the Arabidopsis Response to Volatiles Emitted by Bacillus amyloliquefaciens vol.11, pp.8, 2016, https://doi.org/10.1371/journal.pone.0158621
  3. A new initiative in micropropagation: airborne bacterial volatiles modulate organogenesis and antioxidant activity in tobacco (Nicotiana tabacum L.) callus vol.51, pp.5, 2015, https://doi.org/10.1007/s11627-015-9717-6
  4. Induced suppression of soft rot disease in tobacco by combined application ofBacillus subtilisstrain B4 and chemical elicitor BTH vol.23, pp.8, 2013, https://doi.org/10.1080/09583157.2013.811467
  5. Biological control and plant growth promoting capacity of rhizobacteria on pepper under greenhouse and field conditions vol.50, pp.3, 2012, https://doi.org/10.1007/s12275-012-1477-y
  6. Wars between microbes on roots and fruits vol.6, 2017, https://doi.org/10.12688/f1000research.10696.1
  7. Comparison of induced resistance activated by benzothiadiazole, (2R,3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana vol.59, pp.4, 2010, https://doi.org/10.1111/j.1365-3059.2010.02283.x
  8. Growth Promotion of Tobacco Plant by 3-hydroxy-2-Butanone from Bacillus vallismortis EXTN-1 vol.17, pp.4, 2013, https://doi.org/10.7585/kjps.2013.17.4.388
  9. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions vol.13, pp.11, 2011, https://doi.org/10.1111/j.1462-2920.2011.02582.x
  10. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity vol.90, pp.6, 2016, https://doi.org/10.1007/s11103-015-0344-8
  11. Seed inoculation with beneficial rhizobacteria affects European corn borer (Lepidoptera: Pyralidae) oviposition on maize plants vol.21, pp.1, 2017, https://doi.org/10.1111/ens.12280