DOI QR코드

DOI QR Code

Functional Analysis of Pepper Cys2/His-Type Zinc-Finger Protein Promoter Region in Response to Bacterial Infection and Abiotic Stresses in Tobacco Using Agrobacterium-Mediated Transient Assay

  • Published : 2005.01.01

Abstract

The promoter region flanking the 5’ CAZFP1 coding region was isolated from the genomic DNA of Capsicum annuum. To identify the upstream region of the CAZFP1 gene required for promoter activity, a series of CAZFP1 promoter deletion derivatives was created. Each deletion construct was analyzed by Agrobacterium-mediated transient transformation in tobacco leaves after infection by Pseudomonas syringae pv. tabaci, or treatment with methyl jasmonate (MeJA), ethylene, abscisic acid (ABA), salicylic acid (SA), cold and wounding. Promoter fragments of 685 bp or longer showed 7-fold or greater induction after P. s. pv. tabaci infection and MeJA treatment. The CAZFP1 full-length promoter (-999 bp) also showed 6-fold induction in response to ethylene. The transiently transformed tobacco leaves with the CAZFP1 full length promoter fused-GUS gene showed more than 5-fold induction in response to SA, ABA and cold. These results suggest that the CAZFP1 promoter contains responsive elements for pathogen, MeJA, ethylene, SA, ABA and cold.

Keywords

References

  1. Baulcombe, D. C. 1999. Gene silencing: RNA makes no protein. Curr. Biol. 9:599-601 https://doi.org/10.1016/S0960-9822(99)80383-2
  2. Baranowskij, N., Frohberg, C., Prat, S. and Willmitzer, L. 1994. A novel DNA binding protein with homology to Myb oncoproteins containing only one repeat can function as a transcriptional activator. EMBO J. 13:5383-5392
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Buchel, A. S., Brederode, F. T., Bol, J. F. and Linthorst, H. J. M. 1999. Mutation of GT-1 binding sites in the PR-1A promoter influences the level of inducible gene expression in vivo. Plant Mol. Biol. 40:387-396 https://doi.org/10.1023/A:1006144505121
  5. Frederick, R. D., Thilmony, R. L., Sessa, G. and Martin, G. B. 1998. Recognition specificity for the bacterial avirulence protein AvrPto is determined by Thr-204 in the activation loop of the tomato Pto kinase. Mol. Cell 2:241-245 https://doi.org/10.1016/S1097-2765(00)80134-3
  6. Glazebrook, J. 2001. Genes controlling expression of defense responses in Arabidopsis - 2001 status. Curr. Opin. Plant Biol. 4:301-308 https://doi.org/10.1016/S1369-5266(00)00177-1
  7. Higo, K., Ugawa, Y., Iwamoto, M. and Korenaga, T. 1999. Plant cis-acting regulatory DNA elements (PLACE) database. Nucl. Acid Res. 27:297-300 https://doi.org/10.1093/nar/27.1.297
  8. Iida, A., Kazuoka, T., Torikai, S., Kikuchi, H. and Oeda, K. 2000. A zinc finger protein RHL41 mediates the light acclimatization response in Arabidopsis. Plant J. 24:191-203 https://doi.org/10.1046/j.1365-313x.2000.00864.x
  9. Itzhaki, H., Maxson, J. M. and Woodson, W. R. 1994. An ethylene responsive element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene. Proc. Natl. Acad. Sci. USA 91:8925-8929 https://doi.org/10.1073/pnas.91.19.8925
  10. Jefferson, R. A., Kavanagh, T. A. and Bevan, M. W. 1987. GUS fusions beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901-3907
  11. Kagaya, Y., Ohmiya, K. and Hattori, T. 1999. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucl. Acids Res. 27:470-478 https://doi.org/10.1093/nar/27.2.470
  12. Kang, H. G. and Singh, K. B. 2000. Characterization of salicylic acid-responsive, Arabidopsis Dof domain proteins: Overexpression of OBP3 leads to growth defeats. Plant J. 21:329- 339 https://doi.org/10.1046/j.1365-313x.2000.00678.x
  13. Kapila, J., Rycke, R. D., Van Montagu, M. and Agenon, G. 1997. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci. 122:101-108 https://doi.org/10.1016/S0168-9452(96)04541-4
  14. Kim, J. C., Lee, S. H., Cheong, Y. H., Yoo, C. M., Lee, S. I., Chun, H. J., Yun D. J., Hong, J. C., Lee, S. Y., Lim, C. O. and Cho, M. J. 2001. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J. 25:247-259 https://doi.org/10.1046/j.1365-313x.2001.00947.x
  15. Kim, S. H., Hong, J. K., Lee, S. C., Sohn, K. H., Jung, H. W. and Hwang, B. K. 2004. CAZFP1, $Cys_2/His_2$-type zinc-finger transcription factor gene functions as a pathogen-induced earlydefense gene in Capsicum annuum. Plant Mol. Biol. 55:883- 904 https://doi.org/10.1007/s11103-005-2151-0
  16. Kim, Y. J. and Hwang, B. K. 2000. Pepper gene encoding a basic pathogenesis-related 1 protein is pathogen and ethylene inducible. Physiol. Planta. 108:51-60 https://doi.org/10.1034/j.1399-3054.2000.108001051x./
  17. Kubo, K., Sakamoto, A., Kobayashi, A., Rybka, Z., Kanno, Y., Nakagawa, H., Nishino, T. and Takatsuji, H. 1998. $Cys_2/His_2$ zinc-finger protein family of petunia: evolution and general mechanism of target sequence recognition. Nucl. Acid Res. 26:608-615 https://doi.org/10.1093/nar/26.2.608
  18. Miller, J., McLachlan, A. D. and Klug, K. 1985. Repetitive zincbinding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4:1609-1614
  19. Montgomery, J., Goldman, S., Deikman, J., Margossian, L. and Fischer, R. L. 1993. Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc. Natl. Acad. Sci. USA 90:5939-5943 https://doi.org/10.1073/pnas.90.13.5939
  20. Onate-Sanchez, L. and Singh, K. B. 2002. Identification of Arabidopsis ethylene-responsive binding factors with distinct induction kinetics after pathogen infection. Plant Physiol. 128: 1313-1322 https://doi.org/10.1104/pp.010862
  21. Pavletich, N. and Pabo, C. 1991. Zinc finger-DNA recognition : crystal structure of a Zif268-DNA complex at $2.1\;{{\AA}}$. Science 252:809-817 https://doi.org/10.1126/science.2028256
  22. Rathjen, J. P., Chang, J. H., Staskawicz, B. J. and Michelmore, R. W. 1999. Constitutively active Pto induced a Prf-defendant hypersensitive response in the absence of avrPto. EMBO J. 18: 3232-3240 https://doi.org/10.1093/emboj/18.12.3232
  23. Rushton, P. J. and Somssich, I. E. 1998. Transcriptional control of plant genes responsive to pathogens. Curr. Opin. Plant Biol. 1: 311-315 https://doi.org/10.1016/1369-5266(88)80052-9
  24. Rushton, P. J., Torres, J. T., Parniske, M., Wernert, P., Hahlbrock, K. and Somssich, I. E. 1996. Interaction of elicitor-induced DNAbinding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J. 15:5690-500
  25. Sakai, H., Medrano, L. J. and Meyerowitz, E. M. 1995. Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378:199-203 https://doi.org/10.1038/378199a0
  26. Sakamoto, H., Araki, T., Meshi, T. and Iwabuchi, M. 2000. Expression of a subset of the Arabidopsis $Cys_2/His_2$ -type zincfinger protein gene family under water stress. Gene 248:23-32 https://doi.org/10.1016/S0378-1119(00)00133-5
  27. Scofield, S. R., Tobias, C. M., Rathgen, J. P., Chang, J. H., Lavelle, D. T., Michelmore, R. W. and Staskawicz, B. J. 1996. Molecualr basis of gene-for gene specificity in bacterial speck disease of tomato. Science 274:2063-2065 https://doi.org/10.1126/science.274.5295.2063
  28. Stalberg, K., Ellerstom, M., Ezcurra, I., Ablov, S. and Rask, L. 1996. Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage protein promoter in transgenic Brassica napus seeds. Planta 199:515-519
  29. Sugano, S., Kaminaka, H., Rybka, Z., Catala, R., Salinas, J., Matsui, K., Ohme-Takagi, M. and Takatsuji, H. 2003. Stressresponsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J. 36:830-841 https://doi.org/10.1046/j.1365-313X.2003.01924.x
  30. Tague, B. W. and Goodman, H. M. 1995. Characterization of a family of Arabidopsis zinc finger protein cDNAs. Plant Mol. Biol. 28:267-279 https://doi.org/10.1007/BF00020246
  31. Tague, B. W., Gallant, P. and Goodman, H. M. 1997. Expression analysis of an Arabidopsis $C_2/H_2$ zinc finger protein gene. Plant Mol. Biol. 32:785-796 https://doi.org/10.1007/BF00020477
  32. Takatsuji, H. 1998. Zinc-finger transcription factors in plants. Cell. Mol. Life Sci. 54:582-596 https://doi.org/10.1007/s000180050186
  33. Takatsuji, H., Mori, M., Benfey, P. N., Ren, L. and Chua, N.-H. 1992. Characterization of a zinc finger DNA-binding protein expressed specifically in Petunia petals and seedlings. EMBO J. 11:241-249
  34. Van der Biezen, E. A. and Jones, J. D. 1998. Plant disease-resistance proteins and the gene for gene concept. Trends Biochem. Sci. 23:454-456 https://doi.org/10.1016/S0968-0004(98)01311-5
  35. Yang, Y., Li, R. and Qi, M. 2000. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J. 22:543-551 https://doi.org/10.1046/j.1365-313x.2000.00760.x
  36. Yang, Y., Shah, J. and Klessig, D. F. 1997. Signal perception and transduction in plant defense responses. Gen. Develop. 11:1621-1639 https://doi.org/10.1101/gad.11.13.1621
  37. Yu, D., Chen, C. and Chen, Z. 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527-1540 https://doi.org/10.1105/tpc.13.7.1527