DOI QR코드

DOI QR Code

Study on the Properties of Catalase Activity Using Cuprite Nano-Particles Synthesized by Hydrolysis Method

가수분해법에 의해 제조된 아산화구리 나노분말을 이용한 과산화수소 탈수 연구

  • Uhm, Y.-R. (Department of Nuclear Materials Technology Development,Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, W.-W. (Department of Nuclear Materials Technology Development,Korea Atomic Energy Research Institute (KAERI)) ;
  • Oh, J.-S. (Department of Nuclear Materials Technology Development,Korea Atomic Energy Research Institute (KAERI)) ;
  • Rhee, C.-K. (Department of Nuclear Materials Technology Development,Korea Atomic Energy Research Institute (KAERI))
  • 엄영랑 (한국원자력 연구소, 원자력재료기술개발부) ;
  • 김흥회 (한국원자력 연구소, 원자력재료기술개발부) ;
  • 오정석 (한국원자력 연구소, 원자력재료기술개발부) ;
  • 이창규 (한국원자력 연구소, 원자력재료기술개발부)
  • Published : 2005.02.01

Abstract

$Cu_2O$ nano cubes with high catalase activity were synthesized by reduction of freshly prepared Cu in distilled water at $40^{\circC}$ and their catalase activities of $H_2O_2$ were studied. Transmission electron microscopy (TEM) observation showed that most of these nanocubes were uniform in size, with the average edge length of 30 nm. Selected area electron diffraction of TEM revealed that the nanocube consisted of single crystalline $Cu_2O$, but it changed to CuO phase. The catalase activity depends on the amount of both cuprite phase and surface area.

Keywords

References

  1. H. Gleiter : Adv. Mater., 4 (1992) 474 https://doi.org/10.1002/adma.19920040704
  2. A. M. Morales and C. M. Lieber : Science, 279 (1998) 208 https://doi.org/10.1126/science.279.5348.208
  3. Z. W. Pan, Z. R. Dai and Z. L. Wang : Science, 291 (2001) 1947 https://doi.org/10.1126/science.1058120
  4. Y. G. Sun and Y. N. Xia : Science 298 (2002) 2176 https://doi.org/10.1126/science.1077229
  5. Z. Wang, X. Chen, J. Liu, M, Mo, L. Yang and Y. Qian : Sol. Stat. Comm., 130 (2004) 585 https://doi.org/10.1016/j.ssc.2004.03.028
  6. T. W. Ebbesen and P. M. Ajayan : Nature, 358 (1992) 220 https://doi.org/10.1038/358220a0
  7. S. Bordiga, C. Paze, G. Berlier, D. Scarano, G. Spoto Azecchina and C. Lamberti : Catal. Today 70 (2001) 91 https://doi.org/10.1016/S0920-5861(01)00410-2
  8. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Taracon : Nature, 407 (2000) 496 https://doi.org/10.1038/35035045
  9. T. Tanija, R. Chandra, R. Banerjee and P. Ayyub : Scripta Mater., 44 (2001) 1915 https://doi.org/10.1016/S1359-6462(01)00808-9
  10. Y. R. Uhm, W. W. Kim and C. K. Rhee : Phys. Stat. Sol. A, 201(8) (2004) 1934 https://doi.org/10.1002/pssa.200304560
  11. A. H. Chokshy, A. Rosen, J. Karch and H. Gleiter : Scr. Met., 23 (1989) 1679 https://doi.org/10.1016/0036-9748(89)90342-6
  12. J. F. Pierson, A. Thobor-Keck and A. Billard : Appl. Surf. Sci., 210 (2003) 359 https://doi.org/10.1016/S0169-4332(03)00108-9
  13. Y. R. Uhm, W. W. Kim and C. K.Rhee : Scripta Mater., 50 (2004) 561 https://doi.org/10.1016/j.scriptamat.2003.11.060
  14. J. H. Park, M. K. Lee, C. K. Rhee and W. W. Kim : Mater. Sci. Eng. A, 375-377 (2004) 1263
  15. J. P. Busalmen, M. Vazquez and S. R. Sanchez : Electrochimica Acta, 47 (2002) 1857 https://doi.org/10.1016/S0013-4686(01)00899-4