Griseofulvin from Xylaria sp. Strain F0010, an Endophytic Fungus of Abies holophylla and its Antifungal Activity Against Plant Pathogenic Fungi

  • PARK, JOONG-HYEOP (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • CHOI, GYUNG-JA (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • LEE, SEON-WOO (School of Biological Sciences, Seoul National University) ;
  • LEE, HYANG-BURM (School of Biological Sciences, Seoul National University) ;
  • KIM, KYOUNG-MO (School of Biological Sciences, Seoul National University) ;
  • JUNG, HACK-SUNG (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • JANG, KYOUNG-SOO (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • CHO, KWANG-YUN (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • KIM, JIN-CHEOL (Biological Function Research Team, Korea Research Institute of Chemical Technology)
  • Published : 2005.02.01

Abstract

Abstract Griseofulvin has been used as an antifungal antibiotic for the treatment of mycotic diseases of humans and veterinary animals. The purpose of this work was to identify a griseofulvin-producing endophytic fungus from Abies holophylla and evaluate its in vivo antifungal activity against plant pathogenic fungi. Based on nuclear ribosomal ITS1-5.8SITS2 sequence analysis, the fungus was identified and labeled as Xylaria sp. F0010. Two antifungal substances were purified from liquid cultures of Xylaria sp. F0010, and their chemical identities were determined to be griseofulvin and dechlorogriseofulvin through mass and NMR spectral analyses. Compared to dechlorogriseofulvin, griseofulvin showed high in vivo and in vitro antifungal activity, and effectively controlled the development of rice blast (Magnaporthe grisea), rice sheath blight (Corticium sasaki), wheat leaf rust (Puccinia recondita), and barley powdery mildew (Blumeria graminis f. sp. hordei), at doses of 50 to 150 ${\mu}$g/ml, depending on the disease. This is the first report on the production of griseofulvin and dechlorogriseofulvin by Xylaria species.

Keywords

References

  1. Bayman, P., L. L. Lebron, R. L. Tremblay, and D. J. Lodge. 1997. Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae). New Phytologist 135: 143- 149 https://doi.org/10.1046/j.1469-8137.1997.00618.x
  2. Bayman, P., P Angulo-Sandoval, Z. Baez-Ortiz, and D. J. Lodge. 1998. Distribution and dispersal of Xylaria endophytes in two tree species in Puerto Rico. Mycol. Res. 102: 944- 948 https://doi.org/10.1017/S095375629700590X
  3. Boonphong, S., P Kittakoop, M. Isaka, D. Pittayakhajonwut, M. Tanticharoen, and Y. Thebtaranonth. 2001. Multiplolides A and B, new antifungal 10-membered lactones from Xylaria multiplex. J. Nat. Prod. 64: 965- 967 https://doi.org/10.1021/np000291p
  4. David, G. J. K. and N. H. Paul. 1976. Metabolites of Aspergillus versicolor: 6,8-di-O-methylnidurufin, griseofulvin, dechlorogriseofulvin, and 3,8-dihydroxy-6-methoxy-l-methylxanthone. Phytochemistry 15: 1037- 1039 https://doi.org/10.1016/S0031-9422(00)84399-X
  5. Davidse, L. C. 1986. Benzimidazole fungicides: Mechanism of action and biological impact. Annu. Rev. Phytopathol. 24: 43- 65 https://doi.org/10.1146/annurev.py.24.090186.000355
  6. Dhingra, O. D. and J. B. Sinclair. 1986. Basic Plant Pathology, pp. 227- 243. CRC Press, Boca Raton, Florida, U.S.A.
  7. Dreyfuss, M. and O. Petrini. 1984. Further investigation on the occurrence and distribution of endophytic fungi in tropical plants. Botanica Helvetica 94: 33- 40
  8. Gooday, G. W. 1990. Inhibition of chitin metabolism, pp. 61- 80. In P. J. Kuhn, A. P. J. Trinci, M. L. Jung, M. W. Gosey, and L. G. Copping (eds.), Biochemistry of Cell Walls and Membranes in Fungi. Springer-Verlag, Heidelberg, Germany
  9. Grove, J. F., J. Macmillan, T. P. C. Mulholland, and M. A. T. Rodgers. 1952. Griseofulvin. Int. J. Chem. Soc. 3949- 3958
  10. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucl. Acids Symp. Ser. 41: 95- 98
  11. Isaka, M., A. Jaturapat, W. Kladwang, J. Punya, Y. Lertwerawat, M. Tanticharoen, and Y. Thebtaranonth. 2000. Antiplasmodial compounds from the wood-decayed fungus Xylaria sp. BCC1067. Planta Med. 66: 473- 475 https://doi.org/10.1055/s-2000-8588
  12. Kim, J.-C., G. J. Choi, J.-H. Park, H. T. Kim, and K. Y. Cho. 2001. Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest Manag. Sci. 57: 554-559 https://doi.org/10.1002/ps.318
  13. Kim, J.-C., G. J. Choi, S.-W. Lee, J.-S. Kim, K. Y. Chung, and K. Y. Cho. 2004. Screening extracts of Achyranthes japonica and Rumex crispus for activity against various plant pathogenic fungi and control of powdery mildew. Pest Manag. Sci. 60: 803- 808 https://doi.org/10.1002/ps.811
  14. Lednicer, D. and L. A. Mitscher. 1977. The Organic Chemistry of Drug Synthesis, pp. 313- 317. John Wiley and Sons, New York, U.S.A.
  15. Lin, Y., X. Wu, S. Feng, G. Jiang, J. Luo, S. Zhou, L. L. P. Vrijrnoed, E. B. G. Jones, K. Kronhn, K. Steingrover, and F. Zsila. 2001. Five unique compounds: Xyloketals from mangrove fungus Xylaria sp. from the South China sea coast. J. Org. Chem. 66: 6252- 6256 https://doi.org/10.1021/jo015522r
  16. Lodge, D. J., P. J. Fisher, and B. C. Sutton. 1996. Endophytic fungi of Manilkara bidentata leaves in Puerto Rico. Mycologia 88: 733- 738 https://doi.org/10.2307/3760967
  17. Mantle, P. G., J. Laws, M. J. Tan, and M. Tizard. 1984. A novel process for the production of penitrem mycotoxins by submerged fermentation of Penicillium nigricans. J. Gen. Microbiol. 130: 1293- 1298
  18. Park, J.-H., J. H. Park, G. J. Choi, S.-W. Lee, K. S. Jang, Y. H. Choi, K. Y. Cho, and J.-C. Kim. 2003. Screening for antifungal endophytic fungi against six plant pathogenic fungi. Mycobiology 31: 179- 182 https://doi.org/10.4489/MYCO.2003.31.3.179
  19. Richardson, K. A. and R. S. Currah. 1995. The fungal community associated with the roots of some rainforest trees in Puerto Rico. J. Ind. Microbiol. 17: 284- 294
  20. Rodgers, J. D. 1979. The Xylariaceae: Systematic, biological and evolutionary aspects. Mycologia 71: 1- 41 https://doi.org/10.2307/3759218
  21. Rodrigues, K. F. 1994. The foliar fungal endophytes of the Amazonian palm Euterpe oleracea. Mycologic 86: 376-385 https://doi.org/10.2307/3760568
  22. Rodrigues, K. F. and G. Samuels. 1990. Preliminary study of endophytic fungi in a tropical palm. Mycol. Res. 94: 827-830 https://doi.org/10.1016/S0953-7562(09)81386-5
  23. Smith, C. J., N. R. Morin, G. F. Bills, A. W. Dombrowski, G. M. Salitura, S. K. Smith, A. Zhao, and D. J. MacNeil. 2002. Novel sesquiterpenoids from the fermentation of Xylaria persicaria are selective ligands for the NPY Y5 receptor. J. Org. Chem. 67: 5001-5004 https://doi.org/10.1021/jo011054+
  24. Swofford, D. L. 2002. PAUP: Phylogenetic Analysis Using Parsimony, Version 4.0b10. Illinois Natural History Survey, Champaign, IL, U.S.A.
  25. Terekhova, L. P., O. A. Galatenko, V. V. Kulyaeva, I. V. Tolstykh, T. P. Golova, and G. S. Katrukha. 1992. Formation of griseofulvin and ethamycin by the new producer Streptomyces albolongus. Antibiotiki I Khimioterapita 37: 19- 21
  26. Thompson, J. D., T. J. Gibsori., F. Plewniak, F. Jeanmougin, and D. G. Higgin. 1997. The Clustal X windows interface: Flexible strategies for 'multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876- 4882 https://doi.org/10.1093/nar/25.24.4876
  27. Venkata Dasu, V., T. Panda, and M. Chidanbram. 2002. Development of medium for griseofulvin production: Part I. Screening of medium constituents using the PlackettBurman experimental design. J. Microbiol. Biotechnol. 12: 355- 359
  28. Venkata Dasu, V., T. Panda, and M. Chidanbram. 2002. Development of medium for griseofulvin production: Part II. Optimization of medium constituents using central composite design. J. Microbiol. Biotechnol. 12: 360- 366
  29. Whalley, A. J. S. 1996. The xylariaceous way of life. Mycol. Res. 100: 897- 922 https://doi.org/10.1016/S0953-7562(96)80042-6
  30. White, T. J., T. Bruns, S. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315- 322. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (eds.), PCR Protocols: A Guide to Methods and Application. Academic Press, San Diego, CA, U.S.A.
  31. Yamaguchi, I. 1995. Antibiotics as antifungal agents, pp. 415- 429. In H. Lyr (ed.), Modern Selective FungicidesProperties, Applications, Mechanisms of Action. Gustav Fischer Verlag, Suite, New York, U.S.A.
  32. Yoshihiro, S., A. Yorika, and O. Taiko. 1978. Biosynthetic studies of griseofulvin: Experimental using unnatural compounds as substrates. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 21: 152- 158