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Abstract : In this paper, data-driven modeling and multiresolution analysis (MRA) are applied for a
full-scale wastewater treatment plant (WWTP). The proposed method is based on modeling by partial least
squares (PLS) and multiscale monitoring by a generic dissimilarity measure (GDM), which is suitable for
nonstationary and non-normal process monitoring such as a biological process. Case study in an industrial
plant showed that the PLS model could give good modeling performance and analyze the dynamics of a
complex plant and MRA was useful to detect and isolate various faults due to its multiscale nature. The
proposed method enables us to show the underlying phenomena as well as to filter out unwanted and

disturbing phenomena.
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INTRODUCTION

Due to increasing environmental constraints
and the necessity of reliable wastewater treat-
ment, efficient modeling and monitoring methods
are becoming more and more important. Reliable
modeling and monitoring techniques of biolo-
gical wastewater treatment plant (WWTP) are
necessary to maintain the system performance as
close as possible to optimal conditions. Spe-
cially, monitoring of the biological treatment
process is very important because the recovery
from failures is time-consuming and expensive,
where some of changes are not very obvious
and may grow gradually until they produce a
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serious operational problem. That is, most of the
changes in biological treatment process are very
sluggish when the process is recovered back
from a ‘bad’ state to a ‘normal’ state or back
from a ‘bad’ state to a ‘good’ state. Therefore,
early fault detection and isolation in the
biological process are very efficient to execute
corrective action well before a dangerous
situation happens. At the same time the discri-
mination between serious and minor abnor-
malities is of primary concemn. To accomplish
this task, a reliable detection procedure is
needed. Several approaches have been available
to utilize large on-line and off-line data sets
despite of the increasing popularity and the
decreasing price of on-line measurement systems
in the field of WWTP.""'"

The underlying point is that improving pro-
cess monitoring and control necessarily means
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ensuring better knowledge of the process: which
variables characterize the process, what are their
internal interactions and what degree of confi-
dence can be attributed to the measurements---?
All these questions are concerned with the cha-
racterization of process, which involves several
fundamental stages: the description of the pro-
cess, the listing of the variables characterizing
the process, the establishment of models between
the variables, the identification of parameters
which intervene in these models, the simpli-
fication of models to make them compatible
with real-time use and the validation of models.
It is generally recognized that, depending on the
complexity of the process, two approaches can
be adopted to tackle this modeling problem. The
first is based on the description of the physical
phenomena which enables a mechanistic or first
principles model. The second uses only statis-
tical processing of data to obtain ‘black-box’
type models, which do not take into account the
nature and intensity of the physical interactions
between the variables. The ‘best choice’ often
seems to be a trade-off between these two view-
points, leading to a ‘grey-box’ model which uses
simplified hypotheses on the fundamental equa-
tions of physics, for example, in the form of
matter balances and energy balances, statistics
and data processing tools.”®

To date, the most successful model and the
industrial standard in biological WWTP has been
the deterministic mechanistic model, activated
sludge model (ASM) no. 1, 2, 2d, 3.7 It has
proven to be an effective model for carbon-
aceous, nitrogenous and phosphorous substrate
removal processes in WWTPs. However, because
the ASM model is high-dimensional and con-
tains a large number of kinetic and stoichio-
metric parameters, which should be determined
using information on specific plant data and
process operation, it is not omnipotent in every
situation of model application. As a result, the
general application of such a complex model to,
for instance, process control and the develop-
ment of operational strategies have been limited.

Today, empirical data-based modeling is a

widely used alternative to mechanistic modeling
since it requires less specific knowledge of the
process being studied compared to a first prin-
ciples model. Empirical modeling techniques
require data (measurements) which are collected
on those variables believed to be representative
of the process behavior and of the properties of
the product or system output. Machine learning
algorithms such as statistical regression techni-
ques and neural networks are now routinely used
in the process industries for building empirical
models. Statistical regression techniques, based
upon least squares methodology, have been used
extensively for developing linear empirical mo-
dels for prediction from historical data. How-
ever, it is well known that when dealing with
highly correlated multivariate problems, the
traditional least-squares approach can lead to
singular solutions or imprecise parameter estima-
tiOn. 1.2.6.7)

A wastewater treatment plant is a quite com-
plex system including lots of equipment and
complex processes. The operators are under
increasing regulatory pressure to reduce pollutant
levels in their effluent. One response to this has
been the installation of extensive on-line sam-
pling capable of measuring flow rates, concen-
trations and other variables frequently. Data
acquisition systems may collect a large amount
of data, normally tens of process and control
variables, but there are relatively few significant
events. Therefore, the data from all the measure-
ments should be mapped into significant
description of current process. The obtained data
will give much process information, if only the
important and relevant information can be
extracted and interpreted. Not only are there a
lot of variables to be considered, but also they
are often highly cross-correlated (i.e. the mea-
sured variables are not independent of one
another) and auto-correlated. So, redundancy that
variables carry the same information at least to
some extent is observed. It is desirable to
develop the schemes for providing reliable
on-line information on the status of the plant so

that early corrective actions may be taken.'™
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Multivariate statistical process control (MSPC)
is a possible solution to the dimensionality and
collinearity problems. Contrary to univariate
techniques, multivariate techniques are more
successful solutions to monitor the process data
having severe collinearity and noise. They
contain such methods as principal components
analysis (PCA) or partial least squares (PLS)
combined with standard sorts of control charts.
These methods are the basis of the field of
chemometrics, which has traditionally been con-
cerned with multivariate analyses in chemistry,
particularly those of spectroscopy. PCA and PLS
aim to represent a multivariate set of measure-
ments with a smaller number of the transtormed
variables."'"*'¥  Process monitoring system con-
sists largely of three sequential parts: data
rectification, fault detection and diagnosis. Figure
| illustrates a process monitoring scheme for an
industrial plant. Data rectification means a
screening of available data to remove redundant
information. Fault detection is defined as a
combination of process observations and mea-
surements, data analysis and interpretation to
detect abnormal features or effects and the
isolation of faults. Fault diagnosis involves the
analysis of effects to identify aberrant variables
and rank likely causes. Advice includes a
synthesizing strategy to eliminate the causes and
return the process to normal operating condi-
tions."

Fault and
Disturbance

|

Real Plant

Observations

Advice
Measurements

Consequence Analysis

Detection |

L Diagnosis l

Figure 1. Fault detection and diagnosis scheme
for a process monitoring.

In order to extract useful information from
process data and utilize it for the monitoring of
WWTP, applications of MSPC in the biological
process have recently drawn a great interest by
a few researchers.”®'*'” Krofta er al'® applied
the analysis techniques for dissolved air flota-
tion. Rosen” adapted multivariate statistics based
methods to the wastewater treatment monitoring
system using simulated and real process data.
Van Dongen and Geuens'” illustrated that
multivariate time series analysis can be a valid
alternative of the dynamic modeling in WWTP.
However, multivariate statistical analysis method
has fundamental weak points in the biological
WWTP. The biological treatment process has
several peculiar features unlike chemical or
industrial engineering. First of all, it is non-
stationary, which means that the process itself
changes gradually over time. WWTPs are hardly
ever normally operated for long periods and
what normality means also changes because of
the nonstationarity. For example, seasonable
variations show a dynamic pattern, for example,
the process normal condition evolves according
to the seasonal variations. So, conventional static
PCA is not suited for nonstationary process
monitoring as it assumes that data are indepen-
dently identically distributed (iid) and they are
obtained from a normal operating condition for a
particular process. This is a problem for deve-
loping statistical control charts as they should be
developed from a set of stationary and normal
operating data. Second, many underlying pheno-
mena of WWTP takes place simultaneously and
it may be difficult to separate specific pheno-
menon among them. Namely, it has multiscale
characteristics that have multiple simultaneous
phenomena affecting the data at different time
or frequency scales.™ If these synchronous
characteristics interfere or mask other time or
trequency variations, called the masking effects,
the situation turns troublesome because the
multiscale variations are enlarging the confidence
limits. This is unfavorable because the actual
events can stay undetected by the monitoring
algorithm while the plant is being under way of
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the events.

Shortly, this paper applies two methods, one
is for data-driven prediction modeling and the
other is for multiresolution analysis technique. In
this way, it is possible to take into account the
multivariate, nonstationary and multiscale natures
of WWTP. These approaches are organized by
putting the PLS model and the multiresolution
analysis together. An outline of this paper is as
follows. The first subsection introduces the basic
PLS principle and the conventional monitoring
method briefly. In the second subsection, multi-
resolution analysis combine with the PLS
regression is suggested for the multiscale moni-
toring. Then experimental results are illustrated
and followed by discussion. Finally, the con-
clusions of this article are addressed.

MATERIALS AND METHODS

Partial Least Squares

Partial least squares (PLS) is a multivariable
linear regression algorithm that can handle
correlated inputs and limited data. The algorithm
reduces the dimension of the predictor variables
(input matrix, X) and response variables (output
matrix, Y) by projecting them to the directions
that maximize the covariance between input and
output variables. This projection decomposes
variables of high collinearity into low dimen-
sional variables (input score vector ¢ and output
score vector u). The decomposition of X and Y
by score vectors is formulated as follows”:

X:Zt/1p/,r+F:TPr+E 0
h=1

Y=>uq, +F=UQ +F
P )

where p and ¢ are the loading vectors which
contain information about the relationship of
variables, m is the number of latent variables, T
and U are the score matrices and E and F are
residuals. A score vector is orthogonal and a
loading vector is orthonormal. Although PLS is

a regression technique, it is a visualizing
technique whose ability enables us to interpret
and search data sets more minutely.™"'?

PLS projects X and Y variables simultane-
ously onto the same subspace, T, in such a
manner that there is a good relation between the
position of one observation on the X-plane and
its corresponding position on the Y-plane. Once
the PLS model has been derived, it is important
to grasp its meaning. For this, the scores ¢ and
u are considered. They contain information
about the observations and their similarities/
dissimilarities in X and Y space with respect to
the given problem and model. X and Y weights
provide the way how the variables combine to
form ¢ and u, which in tum express the quan-
titative relation between X and Y. Hence, these
weights are essential for the understanding
which X variables are important for modeling Y,
which X variables provide common information,
and also for the interpretation of the scores ¢

On the other hand, once the PCA and PLS
models have been calculated, and those of
interest retained, it is possible to calculate values
to determine whether the process is in control or
not, called ‘process monitoring. In the moni-
toring phase, both the score values and the
residuals are monitored in order to detect the
occurrence of process faults and disturbances.
For process monitoring, statistical control limits
are needed to determine whether a process is
in-control. Hotelling's 7° and O statistics (or
SPEy) are usually used for this purpose. After
decomposing the observed data, the score value
in the model space at time %,

tk :[P| D: ...pm]/xk = P'xk R 3

is distributed as N4 where A is the
diagonal part of A= P'RP and R is the sample

covariance matrix. # is thus an m-dimensional
reduced representation of the observed vector x;.
On the other hand, the residual at time k&

ek:xk—ik:(l—f’ﬁ’)xkeﬂi” (4)
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is the part not explained by the PCA and PLS
models. Generally, the squared weighted score

(I7 =t/ 47 1y and the squared residual ( Qs = €c€})
are used as monitoring indices for process
monitoring or fault detection. Generally, the
approximated 100(1-a)% control limit for 7° can
be calculated by means of a F-distribution as

ﬂ11:1E91:12F(nun—4;a)
n—m (&)

where F(mn—La) is a F-distribution with
degree of freedom m and n-lwith level of
significance «. On the other hand, the 100(1-
)% control limit for Q statistics is

11k
e \20,h; 0,hy(h, —1)
Oim = 91 +1+ 2
6, 6, (6)

where 6/' = Zil (Zii )j forj =123, hy =1-26,6, /3022
and ¢, is the normal deviate cutting off an area
a of the upper tail of the distribution if A is
positive and under the lower tail if A is

<2305
negative.

2 2
For a new on-line sample Xue, if Loew < Ziin

and Qoen <Q1?..1, we consider the process to be
in-control with 100(1- ¢ )% confidence. Other-
wise, the process may be out of control. Here,
the T° value is used to detect faults associated
with abnormal variations within a model sub-
space, whereas the ( value is used to detect
new events that are not taken into account in
the model subspace. The @ value additionally
tells us whether or not the current model
subspace is valid. However, the conventional
MSPC method, such as 7> and Q statistic, does
not always function well, because it cannot
detect the changes of correlation among process
variables if 7° and Q statistic are inside the
confidence limits. Also, the autocorrelated obser-
vations form a time series in MSPC. Using
control limits only, one observation is considered
at a time and therefore, the presence of pro-

ceeding and succeeding points is masked out by
a ‘window’ consisting of only on observation.
For this autocorrelation problem, window must
be increased to the size required to asses
sequences of plotted points for the relevant
pattern or disturbance.

Generic Dissimilarity Measure

Recently, several dissimilarity indices with the
distribution between two data sets have emer-
ged.*'"*” They are based on the idea of that a
change of process operation can be detected by
comparing the distribution of data sets with
reference data set because the data distribution
reflects the corresponding process operating
condition. In this paper, we applied a generic
dissimilarity measure (GDM) algorithm which
considers the importance of each transformed
variable and compare successive data set for
nonstationarity.” Tt compares covariance struc-
tures of two successive data sets with time-
window concept and represents the degree of
dissimilarity between them by considering the
importance of each transformed variable.

The GDM algorithm is divided into two
major steps, which are the training phase of
historical data sets under normal conditions and
the monitoring phase of a new data set in
various events. As a training phase of normal
data, the intervals and limits of characteristic
values are defined. On the basis of the fact that
the covariance matrix of the pooled matrix of
two data sets can be decomposed using singular
value decomposition (SVD). Suggested by Yoo
et al,*™ GDM is as follows.

First, start from building two successive data
sets with a moving window and normalize them
with sample mean and sample variance (X; and
X:). Then, find the sample covariance matrix
and apply SVD to it.

&z_Lﬂwxﬁi=u
N, -1 (7

x 7Ix _ _
g | 1 1:Nllleerlsz
N-1|X,| |X,| ~N-1 N-1 8)
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where §; is the sample covariance of data set
§ is the pooled sample covariance, N, and N, is
the sample number of data set I and 2,
respectively, and N is the total sample number,
that is, Ni+ N». Figure 2 represents the concept
of window and step size using a moving win-
dow. Window size means the sample number in
each data set and step size means the moni-
toring interval. It should be noticed that window
size of suitable duration is chosen to obtain
enough redundant information about the system
dynamics and step size be selected to preserve
enough monitoring performance.

Window size

‘Step size|

Value

Time
Figure 2. Moving windows between successive
two data set.

Second, apply SVD to § and transform the
data matrix (X;) to orthogonal variables (Y)).

SP =PA )
A L/
YN (10)

where P is the loading matrix, /1 is the diagonal
matrix, and 7; is X;P.

Third, find the sample covariance matrix (R)
of two transformed data sets (¥, and Y-) and
apply SVD to R.

R +R, =/ (1
Rq,=Xq), i=12and j=1l..r (12)

where 9/ is the loading vector, A7 s the

eigenvalue, and r is the PC numbers. By
combining Eqgs. (11) and (12),

Ra) =Xq} and Ryg)=(n, -2 i} (13)

After these linear transformations, two sample
covariance structures of the transformed matrices
share the eigenvectors, then the ecigenvalues
satisfy the following equation.

A+ A=A, (14)

where X, is the /* eigenvalue in the /' data

set and A, is the eigenvalue in the total data
set. As two data sets are more similar, their

eigenvalues is closer to 0.5 A, As J increases,

Ay sharply decreases. In general, the first few

principal components () explain most variation
of data sets.

The following generic dissimilarity measure
(GDM, D) is defined for measuring the dissi-
milarity of two data sets.

(15)

D has a value between 0 and 1. The more similar
two data are, the closer D is to 0. The more
dissimilar two data are, the closer D is to .

Finally, find the (1-¢)100% confidence
interval of each eigenvalue. For many samples,
it is reasonable that we assume that each
eigenvalue is a normal random variable by the
central limit theorem. With the samples obtained
from a normal operation, the interval that there
exist (l-@)100 percents of the eigenvalues
calculated above is obtained by

~tl—a/2N =2){ b T

'
;

<A <tl—a/2;N =2)s{d j+ 1 (16)

;
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where 4/ is the sample mean and S{'l‘/} is the

sample variance. That is, (1- 2)100% of A are
below the limit value and the remaining are
above it.” Typically @ takes the value of 0.05
and 0.01 for the warning and action limit. In
this paper we used that ¢ is 0.05, that is, 95%
confidence limit. The control limits of each
index, ¢, are determined so that the number of
samples outside the control limit is 5% of the
total samples.w)

For the monitoring phase, the confidence
limits of the normal data set are calculated
through the previous step. The sample repre-
senting the current operating condition is scaled
by the sample mean and the sample variance
obtained in the previous steps. Then the GDM
and the corresponding eigenvalues are calculated
using the explained method. The GDM evalu-
ating the difference between two successive data
sets quantitatively can detect a change of pro-
cess operations and monitor a distribution of
time series data. If the GDM is outside the
control limit or deviates from zero value, the
operating condition is changed and the existence
of disturbances is detected. Then, we focus on
the individual variation of each eigenvalue at
several scales. Most of variation is captured by
the first several eigenvectors and so only several
eigenvalues arec considered as a monitoring
index. The remaining variations which are not
captured by the principal eigenvectors are
relatively very small and they are not critically
identified whether they are caused by process
change or noises. If any eigenvalue exceeds its
corresponding confidence limit, the process ope-
ration at that scale may be changing and a
certain event or disturbance occurs.'”"

Important  consideration in monitoring the
process changes or the operating condition is the
determination of appropriate window and step
sizes. These quantities should be carefully selec-
ted taking into consideration the process
characteristics. A step size of one means there is
very slim change of pattern recognition because
patterns require more than one data point (i.e.

data vector in MSPC) in order to be detected.
Therefore, a step size of 1 can provide only a
simplistic measure for showing whether the
process is a state of statistical control or not. As
with the univariate statistical control, larger step
size (i.e. >1) can potentially provide the required
data for identification of abnormal patterns. The
latter are also known as runs or a succession of
items of the same class or repetitive patterns
within a sequence. On the other hand, window
size should be determined according to the
theoretical probability of committing a Type I
error. While a process is in statistical control,
that is, for any given number of points there
can be found a theoretical probability that they
will fall within a certain distance from the
process mean and in a pre-specified order (e.g.
distances from the mean and order of occurrence
can resemble some possible forms of pre-
specified unnatural patterns or disturbances. There-
fore, assuming that a process is behaving
randomly, the larger the number of windowed
points the less likely the chance that a sequence
of random values will match a pre-specified
order such as a trend or stratification. This is,
the larger the window size, the smaller the
probability of wrongly detecting a non-random
patter and disturbance. But too excessive win-
dow size makes the detection of pattern change
slow, delayed detection. In this respect, process
knowledge which indicates true behavior of the
process may provide more reliable source and
less computational load than theoretical app-
roach. We suggest that the window size should
be large in comparison to the time constant of
the process, and the step size should be small in
comparison to the sampling time.”

Multiresolution Analysis and Monitoring

Figure 3 shows the proposed method of the
PLS modeling and multiresolution analysis
(MRA) which can treat the peculiar charac-
teristics of the biological treatment process and
isolate and diagnose their fault sources with a
multiscale approach. In the first place, the PLS
model is constructed with normal historical data

ENVIRONMENTAL ENGINEERING RESEARCH/VOL. 10, NO. 2, 2005
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PLS GDM of

regression moving score matrix
X
Fault
Detection

T

;

Confidence
Limits

Prediction |q ---------------- Diagnosis

Figure 3. Multiresolution analysis for the PLS
modelling and monitoring.

in order to solve the multivariate and collinear
problems in a plant. It is used to represent the
process behavior and the common-cause varia-
tions of a plant and excludes noise, measure-
ment errors, and those wvariations that are
uncorrelated to Y variables. Then, MRA for the
score values of the PLS model is executed by
the GDM to detect the process change and to
diagnose different kinds of faults and distur-
bances. In order to tackle normality problem'”,
each successive data set in the GDM consists of
the PLS score values with a moving window
because the PLS score values are normally
distributed than the original variables themselves.
This is a consequence of the central limit theo-
rem, which can be stated as follows: If the
sample size is large, the theoretical sampling
distribution of the mean can be approximated
closely with a normal distribution. Thus, we
would expect the PLS scores, which are a
weighed sum like a mean, to be distributed
approximately normally.'*'”
strates the normality comparison between the
original values and the PLS scores. Therefore,

Figure 4 demon-

as the abnormality will manifest itself as a shift
or time series distribution change in the score
value than the original variables. As the abnor-
mality will manifest itself as a shift in the score
plane like T° statistic of the PCA and PLS
monitoring, it will be shown as a dissimilarity
value between successive two data sets, that is,
GDM. A moving window of the PLS score
values with a GDM concept may be a remedy
of nonstationary problem of the PLS monitoring.
On the other hand, if the relationships between

‘1 (a) ‘|(b)
"1

expecied value

co o3
original dota

Figure 4. Normal probability plot and histogram
of original data and the PLS score
values (a) normal probability plot of
original data, (b) probability plot of the
score values, (c) histogram of original
data, (d) histogram of the score values.

the process variables are rapidly changed and
the correlation structure has a breakdown, SPEy
of the PLS model can be included in two data
sets of the proposed MRA algorithm. Since the
inner relationship between input and output
variables in WWTP is slowly changed, only
score values of the PLS model are sufficient for
process monitoring.

In this work, the confidence limit of indivi-
dual eigenvalue is used to multiscale fault
detection and isolation. If each of eigenvalues
exceeds to its corresponding confidence limit, it
means that the current process at that scale is
changing and a certain event is occurring. By
monitoring at each scale, we can diagnose diver-
se process variations and events, i.e., diagnosis
of slow variations (seasonal fluctuations or other
long-term dynamics), middle scale variation (inter-
nal disturbance, process operation change), and
instantaneous variations (input disturbances, faults
or sensor noises).””” Because it represents the
corresponding characteristics at each scale, this
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multiresolutional analysis can discover informa-
tion on the scale where process changes, faults
and events occur and analyze the physical/
biological reasons. The proposed MRA method
can give us the diagnosis and interpretation
capability of events and fault sources. Note that
it can get rid of nonstationary problem system-
atically by comparing successive data sets with
a moving window concept. Moreover, it does
not bring about the zero padding problems
unlike the other MRA, such as wavelet."?

EXPERIMENTAL RESULTS
AND DISCUSSION

Process Data

Process data were collected from a biological
treatment plant treating coke wastewater from an
iron and steel producing plant in Korea, so
called biological effluent treatment (BET). Figure
5 shows the layout of the studied full-scale
plant. This treatment plant uses an activated
sludge process with five aeration basins (each of
size 900 ms) and a secondary clarifier (1,200
m’). The treatment plant has two influent
streams: wastewater arrives either directly from
a coke making plant (called BET3) or as pre-
treated wastewater from an upstream treatment
plant at another coke making plant (called
BET2). The coke-oven plant wastewater is
produced during the conversion of coal to coke.
This type of wastewater is extremely difficult to
treat because it is highly polluted and most of

the chemical oxygen demand (COD) contains
large quantities of toxic, inhibitory compounds
and coal-derived wastewaters that contain e.g.
phenolics, thiocyanate, cyanides, poly-hydrocar-
bons and ammonium. In particular, cyanide (CN)
concentration is a very important load among
the influent loads.

PLS Modeling

Table 1 describes the process variables of X
and Y blocks. Eleven process and manipulated
variables, the X block, are used to model three
process output variables, the Y block. The Y
block consists of the sludge volume index (SVI),
the reduction of cyanide, and the reduction of
COD. The process data consisted of daily mean
values from 1 January, 1998 to 9 November,
2000 with a total number of 1034 observations.
The first 720 observations are used for the
calibration of the PLS model. The remaining
314 observations are used as a test set in order
to verify the proposed method. For the deter-
mination of the latent variable number of PLS
model, a cross-validation method is used and
four LVs were selected in the PLS model. It
manages to capture about 54% of the X block
variance and 61% of the Y block variance by
projecting the variables from dimension 14 to
dimension 4, which is originated from the
troublesome and difficult treatment of coke
wastewater. The results of the PLS model are
represented in Table 2.

An appealing feature of the PLS model is the

Finai
C D E [ Settler WWTP

Pretreated
WWTP
BET2 l 1 l l
Coke |BET3
plant Equalization A
Tank ) .
Aeration basin

Recycle

sludge v
Waste
sludge

Figure 5. Plant layout of full-scale coke wastewater treatment process.
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Var. No Variable Description Unit Mean S.D.
X Q: Flow rate from BET2 m’h! 178 15.3
Xz Q; Flow rate from BET2 m’h”! 84.8 8.1
X; CN, Cyanide from BET2 mgL’ 2.5 0.35
Xa CN, Cyanide from BET3 mgL'l 149 1.768
Xs COD, COD from BET2 mgL’I 157.8 19.88
Xs CODs COD from BET3 mgL"”’ 2088 306
X5 MLSS_%E MLVSS at a final aeration basin mgL'l 1547 292.8
Xs MLSS, MLSS in recycle line mgL" 2194 346
Xo DO,erator DO at a final aeration basin mgL”' 2.0 0.98
Xio Tinfluent Influent temperature °C 37.6 2.513
X Tacrator Temperature at a final aerator °C 30.74 2.28
Y\ SV ettler Sludge volume index at settler mgL”’ 63.31 21.73
Ys CNred Cyanide reduction mgL™' 19.31 2.2
Y; CODyeq COD reduction mgl” 605.4 97

Table 2. Variations explained by the PLS model

LV X Blocks Y Blocks
(Cumulative) (Cumulative)
LV 1 0.192 0.319
LV 2 0.338 0.481
LV 3 0.446 0.581
LV 4 0.540 0.607

modeling ability, that is, predictive capability.
Figure 6 shows the real and predicted value
from PLS model and displays the residual of ¥
blocks. The prediction values of the reduction of
COD and the reduction of CN are explained
very well in the test periods and manifest the
prediction power of the PLS model for the
response Y variables. However, the prediction of
SVI of secondary settler is not satisfied unlike
other two quality variables. That may result
from measurement inaccuracy and the operator’s
carelessness, which needs a precise measurement
skill to the operator. The residual values of Y
blocks show the sum of differences between the
real and opredicted values for three response
variables, which is mainly caused by the resi-
dual error of SVI prediction.

Interpretation of PLS Modeling

For the interpretation of the plant, the PLS
loading weights are considered to see how X
and Y variables are interrelated. The loading
plot in Figure 7 confirms the underlying phy-
sical and biological phenomena as the PLS
model distinguished chemical and biological
variables. It represents that the specific X and Y
variables load strongly in the first two LVs,
where CODj;, CODs, and Taeraor for COD reduc-
tion are closely correlated as seen in the left
middle side of Figure 7. The first Y variable,
the COD removal rate of the plant is strongly
influenced by the COD load from BET2 and
BET3 and the temperature in aerators. This
corresponds to the fact that heterotrophic
biomass activity for the carbonaceous nutrients is
influenced by the temperature in the biological
treatment. These variables are uncontrolled o r
partially controlled throughout the process and
therefore exhibit large wvariations. The second
group for CN reduction is related to CNj, CNj,
Tinfuen, Q2 and Qs, and DO of aerator which are
rate related components of the reaction rate,
such as monod equation. It indicates that the
DO concentration in the aeration tank should be
controlled. On the other hand, it is usually
known that cyanides are toxic to heterotrophic

VOL. 10, NO. 2, 2005/ ENVIRONMENTAL ENGINEERING RESEARCH



98  Chang Kyoo Yoo, Hong-Rok Son and In-Beum Lee

140 -

(a) (b)
1204 35
—~ 304
100 - %
3 5
= 604" -]
3 2
=4
40 o
20+
0 T T T T T T 0 T T T T T T
0 50 100 150 200 250 300 o 50 100 150 200 250 300
lime (days) time (days)
2.0+
(d)
% 154
B .
= W
=} Q104
3 @ !
@
= |
o
(o]
[S] 054 |
300 \ ‘H ] ‘
{ |
200 T T T T T T 0.0 T T T T li l T T
] 50 100 150 200 250 300 a 50 100 150 200 250 300
time (days) lime (days)

Figure 6. Prediction results of the PLS model with real Y value (solid line with squares) and predicted
value (dotted line), (a) SVI, (b) reduction of CN, (¢) reduction of COD, (d) squared residual

error of Y variables (SPEY).
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Figure 7. Loading plot of the PLS model.

B Tintienr

bacteria and inhibitory to their reaction rate. In
Figure 7, the cyanide load is counter-connected
with the heterotrophic organism concentration
(MLSS %FE) which is shown in the opposite
direction of each other in the loading plots.
Hence, shock loading of cyanides in the waste-
a deterioration of the

water influent causes

biological treatment process. The adverse effects
of established in
previous experimental studies.” ™" The third
group is made up of MLSS. and MLSS %E
with SVI of secondary settler in the right upper
side region. It exemplifies that the settleability
the
amount in the aerator (MLSS,) and the settler
(MLSS %E).

Since a real wastewater plant has generally

cyanides have been well

of biomass is related to microorganism

more than 3 LVs, it may be quite useful to all
the PLS weight with the
fraction that is explained by the latent variables.

vectors  together
That is, the variable importance in the projection
(VIP) is a good measure of the influence of all
variables in the PLS model on the response
variables.”” VIP plot in Figure 8 reveals that
CODs is the most important variable, followed
the Taermor, MLSS,, MLSS %E, and so on, where
the the wvalue is, the influ-

higher more
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Figure 9. Monitoring performances based on T
and SPEy statistics with 95% confi-
dence limits.

ential the variables are. This can be interpreted
that COD influent from BET3 is most important
to the plant treatment efficiency of the plant.

In Figure 9, the " and SPEy monitoring
charts are shown. The horizontal line corres-
ponds to the 95% significance level of the
training data. From this figure, we can see three
deviations in the monitoring charts of 7° and
SPE\ statistic. During samples 75 to 80, the T°
charts deviated slightly, which indicates that the
deviations are large within the internal model.
However, the SPE, chart does not increase,
which indicates that the internal nmutual relations
are not altered. During samples 100 and 120,
the SPEy chart deviated. In this period, the
process received influents with a high cyanide
and COD and a small influent flow rate, ie., a

highly concentrated load. This influent reduced
the activity of the microorganisms. These vari-
ations of the microorganism characteristics which
were caused by the influent load, led biological
process to a gradual operating change. On the
other hand, around sample 250, the 7* chart has
a peak value, while the SPEy chart is main-
tained in the vicinity of 95% confidence limit
for a long time. We infer that the process has
experienced the large transition in the operating
condition at this time, but does not know its
cause correctly. In order to identify more
obvious cause for the deviation, the contributions
from every measurement variable might be
calculated. Also, it cannot diagnose and isolate
their fault scales from the view point of the
process dynamics.

Multiresolution Analysis

After the construction of the PLS model,
MRA was processed to the score matrix (T) of
the PLS model. To monitor the process change
or detect fault and event, window and step sizes
are 15 samples considering the SRT and 3
samples considering the hydraulic retention time
(HRT), respectively.

MRA to the PLS score values of the test data
set are shown in Figure 10. As shown in Figure
10(a), the GDM started to change at sample 65
and deviated during around samples 65 - 120
(March 3, 2000 - April 27, 2000), where a large
process change happened at this time. It shows
more rapid detection ability than the PLS
method. Four eigenvalues which indicate their
own specific scale disturbance are depicted in
Figure 10(b-e). The remaining eigenvalues have
little information and gives only high frequency
information such as measurement noises. From
Figure 10, we can know that the first and
second eigenvalues largely contribute to the
increase of the GDM and are representative of
middle scale disturbances. In detail, the process
change is first detected in the GDM, which is
caused by the peaks of the second eigenvalue
and then has experienced the systematic
variations of the first eigenvalue. It is easily
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Figure 10. Monitoring performances of the proposed MRA method for the PLS score values with 95%
confidence limits (a) GDM, (b) EVy, (c) EV,, (d) EV.

identified and visualized by monitoring each
eigenvalue pattern at two scales. At this time,
the plant received high input cyanide and COD
load, while a small influent flow rate, that is, a
highly concentrated load. It reduced the activity
the
settling performance, then turned up the SVI

of the microorganisms and diminished

increase in the secondary settler. From this
result, it has been seen that sludge and floc
formation changes due to high load and influent
quality. Figure 11 shows the contribution plot at
sample 70. It means that a large influent load
broke out the external disturbance and were
transformed into an internal disturbance, and
then it changed the process operating region in
the plant. Meanwhile, GDM deviated again from
sample 230 to the last of test data set (August
16, 2000 - November 9, 2000). During the sum-
mer, WWTP was modified and a number of
treatment equipments and facilities were appen-
ded. This made it feasible for operators to
change the operation strategy which increased

the MLSS concentration and maintained the high
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Figure 11. Contribution plot of the PLS score

value at sample 70.

dissolved oxygen concentration.*”” It invokes the
large process changes, which is shown as a
gradual increase of the first eigenvalue in Figure
10(b). This result confirms that MRA is distin-
ctly better than other conventional methods for a
multiscale process change in a nonstationary
signal of unknown characteristics since it can
extract information resulting from the change in
process operation which contributes the loca-
lization of different process faults and events.
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Figure 12. Monitoring performances of the proposed MRA method for the PLS scores and the SPEy
value with 95% confidence limits (a) GDM, (b) EVy, (c) EV,, (d) EVs, (e} EV4, (f) EVs.

For the case that the relationships between the
process variables are rapidly changed and the
correlation structure has a breakdown, the SPEy
values of the PLS model is appended to the
PLS score matrices for MRA. Figure 12 shows
the monitoring results of the proposed method.
Although it manifests similar monitoring perfor-
mance of the previous method, it can detect
more rapidly the events than the previous one. It
indicates that WWTP had undergone a certain
event, not explained by the PLS model, which is
captured by adding the residual error of the PLS
model. It can effectively unify both the 7° and
SPEy statistics together and put advantage of
them into a single representing index.

CONCLUSIONS

In this paper, a new approach of a data-
driven modeling and multiresolution monitoring
method is presented in order to solve collinear,

multivariate, nonstationary, and multiscale pro-
blems in the biological treatment plant. It is
achieved by combining the PLS regression and
multiresolution analysis, where the PLS model is
used for the prediction and MRA is utilized to
detect and diagnose the fault and disturbance
with a multiscale concept. It could give us the
prediction, detection, and diagnosis power at a
time and make the investigation about nonsta-
tionary and multiscale phenomena practicable.
The case study showed that it not only gave
good modeling performance and higher interpre-
tability of a complex biological plant but also
the suitable power of detection and isolation
about various faults and events occurring in an
industrial treatment plant.
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regression coefficient

diagonal matrix of regression coefficient 5,
generic dissimilarity index

residual matrix of X variables

residual matrix of Y variables

sample number of data set i

sample number of total data set
loading vector

loading vector

principal component number

sample covariance matrix of the trans-
formed variables of data set i

sample covariance matrix of total dataset
sample variance of x;

estimated standard deviation of A!
sample covariance matrix of data set i
sum of squared prediction error of X
variables

sum of squared prediction error of Y
variables

score matrix

score vector

score matrix

score vector

total data matrix

sample data matrix i

sample mean of xy

process variable

output (response) variable
transformed variable of data set /
sample matrices of X variables
sample matrices of Y variables

Greek Letters

A=
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~

>
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/™ eigenvalue of /™ data set

sample mean
sample variance
eigenvalue of total data set
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