DOI QR코드

DOI QR Code

ADSORPTION OF PB(2) ON METAL OXIDE PARTICLES CONTAINING ALUMINUM AND TITANIUM IN AQUEOUS SOLUTIONS

  • Published : 2005.04.30

Abstract

Metal oxide particles with mole ratio of aluminum: titanium of 1:1 were synthesized by a sol-gel method. Langmuir (a) and Freundlich (b) adsorption isotherms of dissolved lead [Pb(Ⅱ)] ion on the metal oxide particles containing aluminum and titanium were determined as follows, respectively,(a) , (b) at pH 6where, correlation coefficients (R2) of Langmuir and Freundlich adsorption isotherms were 0.95 and 0.96, respectively.The overall adsorption rate of Pb(Ⅱ) on the metal oxide particles containing aluminum and titanium was determined by a differential bed reactor. The overall adsorption rate at pH 6 was as a following equation.at pH 6

Keywords

References

  1. Kadirvelu, K., Thamaraiselvi, K., and Namasivayam, C., 'Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith,' Sep. Purif. Technol., 24, 497-505 (2001) https://doi.org/10.1016/S1383-5866(01)00149-6
  2. Niesink, R. J. M., Vries, J. D., and Hollinger, M. A., Toxicology Principles and Applications. CRC Press, New York (1996)
  3. Zhan, X. M., and Zhao, X., 'Mechanism of lead adsorption from aqueous solutions using an adsorbent synthesized from natural condensed tannin,' Water Res., 37, 3905-3912 (2003) https://doi.org/10.1016/S0043-1354(03)00312-9
  4. Barbier, F., Due, G., and Petit-Ramel, M., 'Adsorption of lead and cadmium ions from aqueous solution to the montmorillonite/water interface,' Colloids Surf, A 166, 153-159 (2000) https://doi.org/10.1016/S0927-7757(99)00501-4
  5. Sublet, R., Simonnot, M. O., Boireau, A., and Sardin, M., 'Selection of an adsorbent for lead removal from drinking water by a point-of-use treatment device,' Water Res., 37, 4904-4912 (2003) https://doi.org/10.1016/j.watres.2003.08.010
  6. Chong, A. M. Y., Wong, Y. S., and Tam, N. F. Y., 'Performance of different microalgal species in removing nickel and zinc from industrial wastewater,' Chemosphere, 41, 251-257 (2000) https://doi.org/10.1016/S0045-6535(99)00418-X
  7. Ricordel, S., Taha, S., Cisse, I., and Dorange, G., 'Heavy metal removal by adsorption onto peanut husks carbon,' Sep. Purif. Technol, 24, 389-401 (2001) https://doi.org/10.1016/S1383-5866(01)00139-3
  8. Kim, M. S., and Chung, J. G., 'A study on the adsorption characteristics of orthophosphates on rutile-type titanium dioxide in aqueous solutions,' J. Colloid Interface Sci., 233, 31-37 (2001) https://doi.org/10.1006/jcis.2000.7225
  9. Kim, M. S., and Chung, J. G., 'Removal of copper(II) ion by kaolin in aqueous solutions,' Environ. Eng. Res., 7, 49-57 (2002) https://doi.org/10.4491/eer.2002.7.1.049
  10. Hong, S. C., Kim, M. S., and Chung, J. G., 'Adsorption characteristics of Pb(II) on calcite-type calcium carbonate by batch and continuous reactors,' J. Ind. Eng. Chem., 8, 305-312 (2002)
  11. Jiang, L., and Gao, L., 'Effect of iron adsorption on the colloidal stability of nano-sized alumina suspension,' Mater. Chem. Phys., 80, 157-161 (2003) https://doi.org/10.1016/S0254-0584(02)00486-8
  12. Nagashima, K., and Blum, F. D., 'Proton adsorption onto alumina: Extension of multisite complexation theory,' J. Colloid Interface Sci., 217, 28-36 (1999) https://doi.org/10.1006/jcis.1999.6355
  13. Tranior, T. P., and Brown, Jr G. E., 'Parks GA. Adsorption and precipitation of aqueous Zn(II) on alumina powders,' J. Colloid Interface Sci., 231, 359-372 (2000) https://doi.org/10.1006/jcis.2000.7111
  14. Fahmi, A., and Minot, C., 'A theoretical investigation of water adsorption on titanium dioxide surfaces,' Surf Sci., 304, 343-359 (1994) https://doi.org/10.1016/0039-6028(94)91345-5
  15. Ashida, M., Saki, M., and Kan, H., Yasunaga, T., Hachiya, K., and Inoue, T., 'Kinetics of proton adsorption-desorption at $TiO_2$-$H_{2}O$ interface by means of pressure jump technique,' J. Colloid Interface Sci., 67, 219-225 (1978) https://doi.org/10.1016/0021-9797(78)90005-X
  16. Ryu, C. S., Kim, M. S., and Kim, B. W., 'Photodegradation of alachlor with the $TiO_2$ film immobilized on the glass tube in aqueous solution,' Chemosphere, 53, 765-771 (2003) https://doi.org/10.1016/S0045-6535(03)00506-X
  17. Lee, Y. J., Kim, M. S., and Chung, J. G., 'Adsorption characteristics of Pb(II) on rutile-type titanium dioxide and $alpha-type$ alumina in aqueous solutions,' J. Korean Ind. Eng. Chem., 12, 744-749 (2001)
  18. Kim, M. S. and Chung, J. G., 'Removal of copper(II) ion by kaolin in aqueous solutions,' Environ. Eng. Res., 7(1), 49-57 (2002) https://doi.org/10.4491/eer.2002.7.1.049
  19. Lee, Y. J., and Chung, J. G., 'Adsorption characteristics of Pb(II) on titanium dioxide, alumina, and silica in aqueous solutions,' J. Korean Ind. Eng. Chem., 13, 179-185 (2002)
  20. Huang, C. P., 'Adsorption of phosphate at the hydrous ${\gamma}-Al_{2}O_{3}$-electrolyte interface,' J. Colloid Interface Sci., 53, 178-186 (1975) https://doi.org/10.1016/0021-9797(75)90004-1
  21. Kim, C. G., 'Adsorption behavior of thiophene derivatives on soil materials,' Environ. Eng. Res., 7(4), 207-217 (2002) https://doi.org/10.4491/eer.2002.7.4.207
  22. Yim, S. B., 'Surface complexation models for copper(II) adsorption on kaolinite,' Environ. Eng. Res., 8(2), 91-97 (2003) https://doi.org/10.4491/eer.2003.8.2.091
  23. Kim, J. S., Han, S. W., Hwang, I. G., Bae, J. H., and Tokunaga, S., 'A study on removal of $Pb^{2+}$ ion using pellet-type red mud adsorbents,' Environ. Eng. Res., 7(1), 33-37 (2002) https://doi.org/10.4491/eer.2002.7.1.033
  24. Hong, K. M., Kim, M. S., and Chung, J. G., 'Adsorption characteristics of Ni(II) on v-type alumina particles and its determination of overall adsorption rate by a differential bed reactor,' Chemosphere, 54, 927-934 (2004) https://doi.org/10.1016/j.chemosphere.2003.08.036

Cited by

  1. Characterization of Bottom Ash as an Adsorbent of Lead from Aqueous Solutions vol.15, pp.4, 2010, https://doi.org/10.4491/eer.2010.15.4.207
  2. APPLICATIONS OF SERICITE IN WASTEWATER TREATMENT : REMOVAL OF Cu(II) AND Pb(II) FROM AQUEOUS SOLUTIONS vol.11, pp.6, 2005, https://doi.org/10.4491/eer.2006.11.6.303
  3. Removal of Heavy Metals by Sawdust Adsorption: Equilibrium and Kinetic Studies vol.13, pp.2, 2005, https://doi.org/10.4491/eer.2008.13.2.079
  4. Adsorption of As(III), As(V), Cd(II), Cu(II), and Pb(II) from Aqueous Solutions by Natural Muscovite vol.45, pp.6, 2005, https://doi.org/10.1080/01496391003609023
  5. Biomass-Derived Materials in the Remediation of Heavy-Metal Contaminated Water: Removal of Cadmium(II) and Copper(II) from Aqueous Solutions vol.83, pp.9, 2005, https://doi.org/10.2175/106143011x12928814445258
  6. Adsorption of Lead (Ii) Ions by Ecofriendly Copper Oxide Nanoparticles vol.35, pp.6, 2005, https://doi.org/10.13005/ojc/350615