DOI QR코드

DOI QR Code

CHARACTERISTICS OF BIOHYDROGEN PRODUCTION AND MICROBIAL COMMUNITY AS A FUNCTION OF SUBSTRATE CONCENTRATION


Abstract

The feasibility of hydrogen production with a raw seed sludge through direct acclimation of feedstock was investigated at acidogenic stage, and methane was harvested at followed methanogenic stage in an anaerobic two-stage process. Hydrogen content was higher than 57% at all tested organic loading rates (OLRs) and the yield of hydrogen ranged from 1.5 to 2.4 mol H2/mol hexose consumed and peaked at 6 gVSl-1day-1. Normal butyrate and acetate were main volatile fatty acids (VFAs), whereas the concentration of propionate was insignificant. The hydrogen-producing bacteria, Clostridium thermosaccharolyticum, was detected with strong intensity at all tested organic loading rates (OLRs) by denaturing gradient gel electrophoresis (DGGE) of the polymerase chain reaction (PCR) analysis. From COD balance in the process, the fraction of the feed-COD converted to the hydrogen-COD at acidogenic stage ranged from 7.9% to 9.3% and peaked at 6 gVSl-1day-1, whereas the fraction of feed-COD converted to the methane-COD at methanogenic stage ranged from 66.2% to 72.3% and peaked at 3 gVSl-1day-1.

Keywords

References

  1. Lay, J. J., Lee, Y. J., and Noike, T., 'Feasibility of biological hydrogen production from organic fraction of municipal solid waste,' Water Res., 33(11), 2579-2586 (1999) https://doi.org/10.1016/S0043-1354(98)00483-7
  2. Okamoto, M., Miyahara, T., Mizuno, O, and Noike, T., 'Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes,' Water Sci. Technol., 41, 25-32 (2000)
  3. Mizuno, O., Dinsdale, R., Hawkes, F. R., Hawkes, D. L, and Noike, T., 'Enhancement of hydrogen production from glucose by nitrogen gas sparing,' Bioresour. Technol., 73, 59-65 (2000) https://doi.org/10.1016/S0960-8524(99)00130-3
  4. Yu, H., Zhu, Z., Hu, W., and Zhang, H., 'Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures,' Int. J. Hydrogen Energy, 27, 1359-1365 (2002) https://doi.org/10.1016/S0360-3199(02)00073-3
  5. Fang, H. H. P. and Liu, H., 'Effect of pH on hydrogen production from glucose by a mixed culture,' Bioresour. Technol., 82, 87-93 (2002) https://doi.org/10.1016/S0960-8524(01)00110-9
  6. Han, S. K., Kim, S. H., Sung, S., and Shin, H. S., 'Effect of pH and repeated heatshock treatment on hydrogen fermentation of sucrose by a mixed culture,' Environ. Eng. Res., 8(4), 202-211 (2003) https://doi.org/10.4491/eer.2003.8.4.202
  7. Hawkes, F. R., Dinsdale, R., Hawkes, D. L., and Hussy, I., 'Sustainable fermentative hydrogen production: challenges for process optimization,' Int. J. Hydrogen Energy, 27, 1339-1347 (2002) https://doi.org/10.1016/S0360-3199(02)00090-3
  8. Mata-Alvarez, J., Mace, S., and Liabres, P., 'Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives,' Bioresour. Technol., 74, 3-16 (2000) https://doi.org/10.1016/S0960-8524(00)00023-7
  9. Zhang, T., Liu, H., Fang, H. H. P., 'Biohydrogen production from starch in wastewater under thermophilic condition,' J. Environ. Management, 69(2), 149-156 (2003) https://doi.org/10.1016/S0301-4797(03)00141-5
  10. Ueno, Y., Otsuka, S., and Morimoto, M., 'Hydrogen production from industrial waste-water by anaerobic microflora in chemostat culture,' J. Ferment. Bioeng., 82(2), 194-7 (1996) https://doi.org/10.1016/0922-338X(96)85050-1
  11. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F., 'Calorimetric method for determination of sugars and related substance,' Anal. Chem., 28(3), 350356 (1956) https://doi.org/10.1021/ac60114a008
  12. APHA 'Standard Methods for the Examination of Waste and Wastewater,' 18th ed. American Public Health Association, Washington, USA. (1992)
  13. Zoetemeyer, R. J., van den Heuvel, J. C., and Cohen, A., 'pH influence on acidogenic dissimilation of glucose in anaerobic digester,' Water Res., 16, 303-311 (1982) https://doi.org/10.1016/0043-1354(82)90190-7
  14. Vavilin, V. A., Rytow, S. V., and Lokshina, L. Y, 'Modelling hydrogen partial pressure change as a result of competition between the butyrate and propionate groups of acidogenic bacteria,' Bioresour. Technol., 54, 171-177 (1995) https://doi.org/10.1016/0960-8524(95)00127-1
  15. Van Haandel, A. C. and Lettinga, G., 'Anaerobic sewage treatment - A practical guide for regions with a hot climate,' Wiley, New York, (1994)
  16. Ueno, Y., Haruta, S., Ishii, M., and Igarashi, Y., 'Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost,' Appl. Microbiol. Biotechnol., 57, 555-562 (2001b) https://doi.org/10.1007/s002530100806
  17. Nandi, R., and Sengupta, S., 'Microbial production of hydrogen: an overview,' Crit. Rev. Microbiol., 24(1), 61-84 (1998) https://doi.org/10.1080/10408419891294181
  18. Collins, M. D., Lawson, P. A., Willems, A., Cordoba, J. J., Femadez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H., and Farrow, J. A. E., 'The phylogeny of the genus Clostridium : proposal of five new genera and eleven species combinations,' Int. J. Syst. Bacteriol., 44, 812-826 (2003) https://doi.org/10.1099/00207713-44-4-812
  19. Daumas, S., Cord-Ruwisch, R., and Garcial, J. L., 'Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with $H_{2}$ from geothermal ground water,' Antonie Leeuwenhoek, 54, 165-178 (1988) https://doi.org/10.1007/BF00419203
  20. Yu, H. and Fang, H. H. P., 'Thermophilic acidification of dairy wastewater,' Appl. Microbiol. Biotechnol., 54, 439-444 (2000) https://doi.org/10.1007/s002530000390