Molecular Shuttle Memory System Based on Boron-Nitride Nanopeapod

질화붕소 나노피포드에 기반한 나노분자 메모리 시스템에 관한 연구

  • Byun Ki Ryang (Nanoelectronic future Technology Laboratory, School of Electrical and Electronic Engineering, Chung-Ang University) ;
  • Kang Jeong Won (Nanoelectronic future Technology Laboratory, School of Electrical and Electronic Engineering, Chung-Ang University) ;
  • Choi Won Young (Nanoelectronic future Technology Laboratory, School of Electrical and Electronic Engineering, Chung-Ang University) ;
  • Hwang Ho Jung (Nanoelectronic future Technology Laboratory, School of Electrical and Electronic Engineering, Chung-Ang University)
  • 변기량 (중앙대학교 전자전기공학부 나노전자신기술연구실) ;
  • 강정원 (중앙대학교 전자전기공학부 나노전자신기술연구실) ;
  • 최원영 (중앙대학교 전자전기공학부 나노전자신기술연구실) ;
  • 황호정 (중앙대학교 전자전기공학부 나노전자신기술연구실)
  • Published : 2005.03.01

Abstract

Bucky shuttle memory systems were investigated by the classical molecular dynamics(MD) simulations. Energetics and operating response of the shuttle-memory-elements u?ere examined by MD simulations of the C/sub 60/ shuttle in the nanomemory systems under various external force fields. Single-nanopeapod type was consisting of three fullerenes encapsulated in (10, 10) boron-nitride nanotube and filled Cu electrode. Studied systems could be applied to nonvolatile memory. MD simulation results showed that the stable bit flops could be achieved from the external force fields of 0.1 eV/Å for single-nanopeapod type.

분자 위치제어 메모리 시스템에 대하여 고전적인 분자동역학을 이용하여 결합에너지 및 다양한 외부전기장의 형태에 따른 셔틀 풀러렌 동작에 관하여 연구하였다. 단일 나노피포드 형(single-nanopeapod type)은 질화붕소 나노튜브(boron-nitride nanotube)속에 세 개의 엔도풀러렌(endo-fullerene)과 양쪽 끝에 구리 전극이 채워져 있는 구조를 갖고 있는 구조를 갖고 있다. 결론적으로, 분자동역학 시뮬레이션 결과로부터 이 나노메모리 시스템은 비휘발성임을 알 수 있었다. 안정적인 bit 변화를 위해서는 단일 나노피포드 형은 0.1 eV/Å 외부전기장이 필요로 함을 알 수 있었다.

Keywords

References

  1. S. Iijima, Nature 354, 56 (1991)
  2. M. S. Dresselhaus, G. Dresselhaus and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, (Academic Prss, San Diego. 1996)
  3. J. Zhao, A. Buldum, J. Han, and J.P. Lu, Nanotechnology 13, 195 (2002) https://doi.org/10.1088/0957-4484/13/2/312
  4. R. E. Barajas-Barraza and R. A. Guirado-Lopez, Phys. Rev. B 66, 155426 (2002) https://doi.org/10.1103/PhysRevB.66.155426
  5. B. W. Smith, M. Monthioux, and D. E. Luzzi, Nature 396, 323 (1998)
  6. B. Burteaux, A. Claye, B. W. Smith, M. Monthioux, D. E. Luzzi, and J. E. Fischer, Chem. Phys. Lett. 310, 21 (1999) https://doi.org/10.1016/S0009-2614(99)00720-4
  7. B. W. Smith, M. Monthioux, and D. E. Luzzi, Chem. Phys. Lett. 315, 31 (1999) https://doi.org/10.1016/S0009-2614(99)00896-9
  8. B. W. Smith, and D. E. Luzzi, Chem. Phys. Lett. 321, 169 (2000) https://doi.org/10.1016/S0009-2614(00)00307-9
  9. K. Hirahara, K. Suenaga, S. Bandow, H. Kato, T. Okazaki, H. Shinohara, and S. Iijima, Phys. Rev. Lett. 85, 5384 (2000) https://doi.org/10.1103/PhysRevLett.85.5384
  10. J. Sloan, R. E. Dunin-Borkowski, J. L. Hutchison, K. S. Coleman, V. C. Williams, J. B. Claridge, A. P. E. Yorka, C. Xu, S. R. Bailey, G. Brown, S. Friedrichs, and M. K. H. Green, Chem. Phys. Lett. 316, 191 (2000). https://doi.org/10.1016/S0009-2614(99)01250-6
  11. Y. K. Kwon, D. Tomanek, and S. Iijima, Phys. Rev. Lett. 82, 1470 (1999) https://doi.org/10.1103/PhysRevLett.82.1470
  12. R. F. Service, Science 292, 45 (2001) https://doi.org/10.1126/science.292.5514.45
  13. W. Mickelson, S. Aloni, W-Q Han, J. Cumings, and A. Zettl, Science 300, 467 (2003) https://doi.org/10.1126/science.1082346
  14. D. Goldberg, F. F. Xu, and Y. Bando, Appl. Phys. A. 76, 479 (2003) https://doi.org/10.1007/s00339-002-2041-0
  15. S. Okada, S. Saito, and A. Oshiyam, Phys. Rev. B. 64, 201303 (2003) https://doi.org/10.1103/PhysRevB.64.201303
  16. L. A. Girifalco and M. Hodak, Phys. Rev. B. 65, 125404 (2002) https://doi.org/10.1103/PhysRevB.65.125404
  17. B. I. Yakobson and R. E. Smalley, Am. Sci. 85, 324 (1997)
  18. X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Europhys. Lett. 28, 335 (1994) https://doi.org/10.1209/0295-5075/28/5/007
  19. G. Gao, T. Cagin, and W. A. Goddard III, Phys. Rev. Lett. 80, 5556 (1998) https://doi.org/10.1103/PhysRevLett.80.5556
  20. K. Albe and W. Moller, Comp. Mater. Sci. 10, 111 (1998) https://doi.org/10.1016/S0927-0256(97)00172-9
  21. M. Hodak and L. A. Girifalco, Phys. Rev. B 67, 075419 (2003)
  22. L. A. Girifalco, M. Hodak, and R. S. Lee, Phys. Rev. B 62, 13104 (2000) https://doi.org/10.1103/PhysRevB.62.13104
  23. S. Dorfman, K. C. Mundim, D. Fuks, A. Berner, D. E. Ellis, and J. V. Humbeeck, Met. Sci. Eng. C 15, 191 (2001) https://doi.org/10.1016/S0928-4931(01)00221-1
  24. J. W. Kang and H. J. Hwang, Nanotechnology 13, 524 (2002) https://doi.org/10.1088/0957-4484/13/4/316
  25. W. Y. Choi, J. W. Kang, and H. J. Hwang, Physica E 23, 135 (2004) https://doi.org/10.1016/j.physe.2004.01.012
  26. J. W. Kang and H. J. Hwang, J. Phys.: Condens. Matter 14, 2629 (2002)
  27. J. W. Kang and H. J. Hwang, Comp. Mater. Sci. 23, 105 (2002) https://doi.org/10.1016/S0927-0256(01)00213-0
  28. J. W. Kang and H. J. Hwang, J. Korean Phys. Soc. 40, 946 (2002)