Development and Characterization of Polymer Electrolyte Membranes Containing Polysilsesquioxane Spheres

Polysilsesquioxane 구를 함유하는 고분자 전해질 막 제조 및 특성 연구

  • Hong Seong Uk (Department of Chemical Engineering, Hanbat National University) ;
  • Cheon Hun Sang (Department of Chemical Engineering, Hanbat National University) ;
  • Kim Young Baik (Department of Nano and Polymer Materials Engineering, Paichai University) ;
  • Park Hun Hwee (Department of Environmental Engineering, Hoseo University)
  • 홍성욱 (국립한밭대학교 화학공학과) ;
  • 천훈상 (국립한밭대학교 화학공학과) ;
  • 김영백 (배재대학교 나노고분자재료공학과) ;
  • 박헌휘 (호서대학교 환경공학과)
  • Published : 2005.03.01

Abstract

Polymer electrolyte membranes containing polysilsesquioxane (PSQ) spheres were prepared with the blend of sulfonated poly(ether ether ketone) (SPEEK) (60%) and poly(ether sulfone) (PES) (40%). The amount of PSQ spheres was fixed at 10 wt%. The prepared polymer electrolyte membranes were characterized in terms of methanol permeability, proton conductivity, and ion exchange capacity. In all cases, both methanol permeability and proton conductivity of the polymer electrolyte membranes containing PSQ spheres were lower than the values of Nafion 117 and higher than those of SPEEK/PES (6:4) blend without PSQ spheres. The experimental results indicated that the polymer electrolyte membranes containing MS64 and VTMOS spheres were the best choice in terms of the ratio of proton conductivity to methanol permeability.

Sulfunated poly(ether ether ketone) (SPEEK) (60%)와 Poly(ether sulfone) (PES) (40%)의 블렌드에 다양한 종류의 polysilsesquioxane (PSQ)구를 첨가하여 전해질 막을 제조하였다. 이 때 PSQ구의 양은 10 wt%로 고정하였다. 제조된 막을 사용하여 PSQ 구의 종류에 따른 메탄올 투과도, 수소 이온 전도도, 그리고 이온 교환 용량의 변화를 측정한 결과 모든 경우에 있어서 수소 이온 전도도와 메탄올 투과도가 Nafion 117보다 낮았으며 PSQ 구를 함유하지 않은 SPEEK/PES(6:4) 블렌드보다는 높았다. 특히, MS64구와 VTMOS구를 포함한 전해질 막의 경우에는 수소 이온 전도도와 메탄올 투과도의 비로 나타내는 선택도가 25℃에서 Nafion 117보다 2배 이상 높았다.

Keywords

References

  1. K. Kordesch and G. Simader, 'Fuel Cells and their Applications', VCH, Weinheim (1996)
  2. J. Larminie and A. Dicks, 'Fuel Cell Systems Explained', John Wiley & Sons, West Sussex, England (2000)
  3. Y. M. Lee and H. B. Park, 'Development of membrane materials for direct methanol fuel cell', Membrane J., 10, 103 (2000)
  4. A. Heinzel and V. M. Barragan, 'A review of the state of art of the methanol crossover in direct methanol fuel cells', J. Power Source, 84, 70 (1999)
  5. S. Koter, P. Pitrowski, and J. Kerres, 'Comparative investigations of ion exchange membranes', J. Membrane Sci., 153, 83 (1999)
  6. J. Cruickshank and K. Scott, 'The degree and effect of methanol crossover in the direct methanol fuel cell', J. Power Source, 70, 40 (1998)
  7. D. H. Jung, S. Y. Cho, D. H. Peck, D. R. Shin, and J. S. Kim, 'Performance evaluation of a Nafion/silica oxide hybrid membrane for direct methanol fuel cell', J. Power Source, 106, 173 (2002)
  8. Z. G. Shao, P. Joghee, and I. M. Hsing, 'Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cell', J. Membrane Sci., 229, 43 (2004)
  9. S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, and S. Kaliaguine, 'Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell application', J. Membrane Sci., 173, 17 (2000)
  10. L. Li, J. Zhang, and Y. Wang, 'Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell', J. Membrane Sci., 226, 159 (2003)
  11. S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, and K. Richau, 'Inorganic modification of proton conductive polymer membranes for direct methanol fuel cell', J. Membrane Sci., 203, 215 (2002)
  12. J. H. Chang, J. H. Park, G. G. Park, C. S. Kim, and O. O. Park, 'Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials', J. Power Source, 124, 18 (2003)
  13. H. S. Cheon, C. G. Lee, and S. U. Hong, 'Characterization of polymer blends of poly( ether sulfone )/sulfonated poly( ether ether ketone) for DMFC', Korean J. Ind. Eng. Chem., 16, 144 (2005)
  14. F. Helmer and M. Metzmann, European Patent 0574 791 A2 (1993)