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Application of (Max, +)-algebra to the Waiting Times in
Deterministic 2-node Tandem Queues with Blocking*

Dong-Won Seo**

= Abstract =

In this study, we consider characteristics of Stationary waiting times in single-server 2-node tandem queues with
a finite buffer, a Poisson arrival process and deterministic service times. The system has two buffers: one at the
first node is Infinite and the other one at the second node Is finite. We show that the sojourn time or departure process
does not depend on the capacity of the finite buffer and on the order of nodes (service times), which are the same
as the previous results. Furthermore, the explicit expressions of waiting times at the first node are given as a function
of the capacity of the finite buffer and we are able to disclose a relationship of waiting times between under communi-
cation blocking and under manufacturing blocking. Some numerical examples are also given.
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1. Introduction models of communication and manufacturing
systems, tandem queues with finite buffers

Stochastic networks with finite buffers have have been investigated. Many researchers have
been widely studied. In particular, as common interests in characteristics in stochastic net-
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works such as mean waiting times, sojourn
times, departure processes, steady-state prob-
abilities, blocking probabilities and cycle times
and so on. Since the computational complexity
and difficulty in the analysis of stochastic net-
works, most studies are focused on very re-
strictive and small size of tandem queues over
the past decades such as the systems with
constant or exponential or phase-type service
times and only two or three nodes. Much of
literature on tandem queues with finite buffers
has proposed several approximation methods
(see for example Brandwajn and Jow [9] and
references therein). Lee and Zipkin [14] studied
on approximation of performances in a make-
to-order system which corresponds to tandem
queues with Poisson demand process and ex-—
ponential service times.

In Poisson driven 2-node tandem queues
with exponential service times Grassmann and
Drekic [10] determined the joint distribution of
both lines in equilibrium by using generalized
eigenvalues. Onvural and Perros [16] studies
equivalencies on joint queue length distribution
in queueing networks with exponentially dis-
tributed service times and interarrival time
under three types of configurations : tandem,
split and merge. By comparing the state space
of systems they showed that for a 2-node
tandem queues with exponential service times
all types are equivalent to each other if the
first queue is infinite. For nonoverlapping ser-
vice times, Whitt [19] (see also references the-
rein) studied the optimal order of nodes, which
minimizes the expected sojourn times in tan-
dem queues with infinite buffers and an arbi-
trary arrival process. Nakade [15] derived bo-
unds for expected cycle times in tandem que-

ues with general service times under commu-
nication and manufacturing blocking. He gave
upper bounds from the synchronous systems
and lower bounds by solving the simultaneous
equations using distribution functions of proc—
essing times.

Wan and Wolff [18) showed that the de-
parture processes in finite capacity tandem qu-
eues with an infinite buffer at the first node
and nonoverlapping service times with respect
to tasks are independent of the size of finite
buffers when it is greater than 2 under com-
munication blocking or when it is greater than
1 under manufacturing blocking. They have
assumed that the capacities of buffers include
the space for a customer in service and that
arrival process is arbitrary. Labetoulle and Pu-
jolle [13] gave the same results for the mean
response time in deterministic finite tandem
queues, and derived the mean waiting times of
each node in tandem queues with infinite buf-
fers. In our best knowledge, however, there is
no result on the waiting times in the subarea
of tandem queueing networks with finite buf-
fers.

Recently, more generous stochastic queueing
networks which are called (max, +)-linear sys—
tems are studied. (Max, +)-linear systems co-
ver various types of queueing networks which
are prevalent in telecommunication, trans-
portation, manufacturing and production sys-
tems. Various instances of (max, +)-linear sys-
tems can be represented by stochastic event
graphs, a special type of stochastic Petri net.
Petri nets allow one to analyze and model
(max, +)-linear systems which are noncon-
current (choice-free) and nonovertaking nets

and consist of single server queues under FIFO



service discipline. Complex discrete event sys—
tems (DESs) can be properly modeled by this
method involving only ‘max’ and ‘+ operations,
but unfortunately it is very hard to obtain
closed form expressions for performance mea-
sures of these complex systems except for
some restricted models.

Baccelli and Schmidt [8] derived a Taylor
series expansion for the expected value of sta-
tionary waiting times with respect to the ar-
rival rate in Poisson driven (max, +)-linear
systems. This expansion approach was gener-
alized to other characteristics (such as higher
order moments, Laplace transform, tail proba-
bility) of stationary waiting times and tran-
sient waiting times by Baccelli, Hasenfuss and
Schmidt {6, 7], Hasenfuss [12], Ayhan and Seo
[2-4] and Seo [17} and to joint characteristics
of stationary waiting times by Ayhan and
Baccelli [1]. In [2-4, 17] they derived the ex-
plicit expressions on characteristics for sta-
tionary and transient of waiting times in {(max,
+)-linear systems with a Poisson input pro-
cess.

As an application of these results, we are
able to investigate certain properties of de—
terministic tandem queueing networks with a
Poisson arrival process and blocking. The ob-
ject of this research is to disclose the effect of
finite buffers to stationary waiting times in all
areas of the systems under various kinds of
blocking. In addition, a relationship on sta-
tionary waiting times in the deterministic sys-
tems between with communication blocking
and with manufacturing blocking is also stu~
died. We focus on 2-node deterministic tan-
dem queues with a Poisson arrival process

and a finite buffer in this study. The analysis
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on the deterministic tandem gueues with more

than 2 nodes will be studied later on.

The paper is organized as follows. In Sec—
tion 2 some preliminaries on waiting times in
(max, +)-linear systems are given. Section 3
contains our main results and Section 4 shows
examples to illustrate this result. Conclusion
and some future research topics are mentioned
in Sections 5.

2. Waiting Times in (Max, +)
-Linear Systems

Under the notion of an open (max, +)-linear
stochastic system, one understands a sequence
{X,} of random vectors satisfying a-dimen~

sional vectorial recurrence equations

Xn+1=An®Xn@Bn+X®Tn+l 2.1

with an initial condition Xy where

o {T,} is a nondecreasing sequence of re-
al~valued random numbers (the epochs of
the Poisson arrival process),

e {A,} is a stationary and ergodic se-
quence of ax e matrices with real-valued
random entries,

¢ {B,} is a stationary and ergodic se-
quence of ax1 matrices with real-valued
random entries,

¢ {X,} is a sequence of ¢—dimensional
state vectors.

Here, the addition @©(o~plus) means coordina-
tewise maximization and the multiplication &®
(o-times) means addition for scalars and (max,
+) algebra product for matrices (see Baccelli et
al. [5]). Such systems allow one to represent
the dynamics of stochastic Petri nets belong~
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ing to the class of event graphs ({5, 8]). In
most cases, and particularly for systems with
a greater than 2, it is very difficult to de-
termine the characteristics of the random vec-
tor W=(W!, W2, W9 in closed form.

In particular, this class contains various in-
stances of queueing networks like acyclic and
cyclic fork—join queueing networks, finite or
infinite capacity tandem queueing networks
with various kinds of blocking rules (manu-
facturing and communication), synchronized
queueing networks etc. It also contains some
basic manufacturing systems like Kanban net-
works, assembly systems and so forth.

In all these models, T» is the arrival epoch
of the n-th customer to the network and the

coordinates X , of the state vector {X,}=

(X3, X%, X2) represent absolute times (like
beginning of the n-th service in the i-th que-
ue) which grow to oo when n increases un-
boundedly. For this reason one is actually more
interested in the differences W, = X,— T, (like
the waiting time of the n-th customer until
the beginning of his service in queue i), which
are expected to admit a certain stationary
state W'= lim, . (in distribution) under cer-
tain rate conditions. Let ©»=Tps1— T, (the
interarrival time) with 7o=0 and let C(x) be
the a@xa matrix with all diagonal entries equal
to —x and all nondiagonal entries equal to
— oo, By subtracting T.+1 from both sides of
(2.1), the new state vector W,+1 can be writ-

ten as

Wy1=A,QC(r,) @W,®B,,,

for >0 and with some initial condition W.

Under certain conditions, it is shown in [5]
that for all A< e~ ! where @ is the maximal
(max, +) Lyapunov exponent of the sequence
{A,}, W is unique and determined by the

matrix-series

W=D,® D c(T_,)®D, 2.2)

=1
with Dy= By and
k
D= EIA_"]@’B-'@ 23)

for all %£=1. For a general (max, +)-linear sto-
chastic system the i-th component of the ran-
dom vector D, can be interpreted as the lon-
gest path from the initial node to node i in the
corresponding task graph. Note that the com-
ponents of Dr can be written in terms of
service times.

We assume that each entry of the random
matrix A, is either almost surely nonnegative
or equal to —oo, and that all entries on the
diagonal of A. are nonnegative. We also as-
sume that there is an integer 0 <« < a such
that the first ¢ coordinates of the a-dimen-
sional random vectors B. are nonnegative, i.e.
B;20 for all 1<i<a'. Let D, be defined as
in (2.3) with Dy= By, First o coordinates of

D, are assumed to be nondecreasing in n ie.
0<D{<D{<- for all i=1,2,.a

Under the assumption that {7.} is a sta-
tionary Poisson process with intensity A and
that the sequences {A,} and {B,} have cer-
tain independence properties, Baccelli, Hasen-
fuss and Schmidt [6, 12] derived a Taylor ser-
ies expansion for the expected value of func-
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tional of stationary waiting times, E[G(W')]
for =1, -,a". For an integrable, bounded and
nonnegative function G( -), if E[G(W?)] is
(m+1)-times differentiable in the arrival in-

tensity A< [0,a '), then
ELGW)]= 3} A*Elg,.. (D). Dy, -+, D})]
+ 0™ 2.4)

for all £#=0,1,,m. Here the polynomials

2" is defined as

Lk
qk+1(x0,x1,"',xk)= ngo( n )(_l)k ”H[k](xn)
k-1 k-1 ] . [l
-5 B )ena e

{pk—j(xn+1v“"xkvi+ n)

R IV IC TR FE S} §

with H%) = G(x) and H (%) is recursi-

vely defined by a suitably chosen version of

. .. . . [n-1]
the indefinite Reimann-integral f H () dx.

And the polynomial 2:(**) is defined as

.Dk(xo,"',xk—l): A
(i iyords-1JEN,

2y
!

iy i
i X0 *1

(__ 1) h( iC'il"

il il i,

where

Nle:{(l‘ovl.lv""ik 1)5{0,1,...}’?;
gttt iy =k,
lf Zs=l > ]-vis—lmodk::'":l's—l+1modk=0}
and

k-1
7o iy, i) =14+ Z G, 20)

for all 2= 1, with I(x)=1 whenever x is true

and I(x) =0 otherwise.

For instance when G(x)=x" for veN their
expression (2.4) leads to expansions for mo-
ments of Wi, for i=1,--,a’. In particular, v=1
gives the expansion result for the first mo-
ment of W which was first derived by Baccelli
and Schmidt [8]. In [12] they showed that 4.
is the same expression as the polynomial 2«
when G(x)=x.

From now on, we consider a class of de-
terministic (max, +)-linear systems where the
net topology such that for each ie{1,,a"}

the elements of the sequence {D.} is given by

T for m=0,,&—1
" 7%+ (m—¢&)a; for m=z ¢ (25)

for deterministic real numbers 0 < 7f € 7/ <

= ’/ie. and ¢; and some nonnegative integer
;. The Lyapunov exponent of the entire sys-
tem is hence given by a= irllgga,{ai}. Even tho-
ugh not all deterministic (max,+)-linear sys-
tems fall into this category, this class covers
many queueing systems with deterministic ser-
vice times such as tandem queues with vari-
ous types of blocking, fork-and-join type que-
ueing networks, queuing networks operating
under Kanban, CONWIP control strategies etc.
Ayhan and Seo 2] (see also [17]) derived the
following closed form expression on the sta-
tionary waiting times in a class of (max, +)-

linear systems with deterministic service times.

Theorem 1 : Let {74} be a stationary Poisson
process with rate A such that A €[0,a;7Y),
Suppose that ie {1,--,¢'} and D) has the
structure given in (2.5). Then for §;21
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(=D*(n%) "

=) A*
(Xt

— A7+ (m~&))a,— 1)

£-1
+(1—,o,-)m§:0 e
’i:‘ (=1)*rr ( r— 1)(

=0 Ak+l k

)(z)rkl

— A9+ (m—&)a;— 1)

£—2
+(1—p;) Zo e

’i‘ (=D*rk! ( r—1 )(

= Ale+l k

)(Wm) r—k-1

x 3 e (A(nh+ (mt =€) a)),
/177{m+1~1)
/177{"1+l)}

/1,71;”“, .,
= 0,05y e,

with the convention that summation over an
empty set is 0 and for & =0

ELW 1= 3 ( 7)o YEL W) )
where ©0;=4a; and W is the stationary waiting

time in an M/D/1 queue with service time

equal to @; and arrival rate A.

The moments of stationary waiting times in
an M/D/1 queue can be computed easily using
the recursive formula of Takacs. It is well
known that (see for example Gross and Harris
(11D for r=1,

- (a;)'*?

_ Z( )E[ wr- )]—TH—

=1

E[W’]—

3. Waiting Times in 2-node
Tandem Queues with
Deterministic Service

In this study, we investigate on waiting ti-

mes in single-server 2-node tandem queues
with a finite buffer, a Poisson arrival process
and deterministic service times. The system
has two buffers : one at the first node is in-
finite and another one at the second node is
finite.

Let ¢ and K: be the deterministic service
time and the size of buffer at node i (i=1,2).
The buffer size includes a room for a custom-
er in servicee We first mention about the
waiting times in 2-node tandem queues with
infinite buffers (K,=K;=), From the defi-
nition of random vector D,, one can obtain the

expressions on the components of D, as

Dl=po! for n>0,

Di=¢'+nmax{a',0? for n=0.

As we mentioned earlier, the components of
D, can be written in terms of service times
and depend on the structure of stochastic net-
works and service times. Therefore, if the com-
ponents of D, for all #>0 in one system are
the same as those in another, then we can see
that two systems are equivalent.

For 2-node tandem queues with a finite buf-
fer, we consider waiting times under two blo-
cking policies : communication blocking and ma-
nufacturing blocking. Under communication bloc-
king a customer at node j cannot begin his
service unless there is a vacant space in the
buffer at node j+1. For manufacturing block-
ing, a customer served at node j moves to
node j+1 only if the buffer of node j+1 is not
full ; otherwise the blocked customer stays in
node j until a vacancy is available. During that
time, node j is blocked from serving other
customers.



[Figure 1] 2-node tandem queues with a finite buffer of size 2 and infinite buffers

To derive recursive equations in {(max, +)-
linear systems with finite buffers one depicts
a corresponding event graph and then convert
it to an event graph with infinite buffers by
inserting dummy nodes with zero service times.
For example, 2-node tandem queues with K,
=,K;=2 depicted in [Figure 1] (left) can
be converted to the event graph with infinite
buffers depicted in [Figure 1] (right) by in-~
serting a dummy node with zero service time.

We first derive expressions of the random
vector D, under communication blocking. The
finite buffer systems with communication bloc-
king we consider here have infinite buffer at
the first node and finite buffer at the second
node, i.e. Ki =, K3 Similarly as done in
the infinite buffer case, one is able to obtain
the expressions for the components of the

random vector D, as follows :

1f Kz'_:l'
D)= n(d'+ %) for u=0,
Di=0c"+ n(a'+0®) for m=0,

if Ky=2,

D=0

Dl=0'"+ (n—1)max{d, *} for nx],

Di=¢' + pmax{o', o) for »=0,
if Ky=3,
D,=nc' for n=0,1,",Ky—1, (3.1

Dl=d"+ max{(n—1)d',(n— K,+1)é%}
for 72K, (3.2)
Di=¢'+ nmax{d',6*} for n=>0.

From the above expressions, we know that
the expression of D2 for all »>0 and K2>2 is

the same as that of DZ for all >0 and K,=
oo, It shows the same result in {17] that when
Ky;22 the sojourn time (here W2+ o2) or de-
parture process in a tandem queue with de-
terministic or nonoverlapping service times un-
der communication blocking are the same as
that in the system with infinite buffers. In
other words, a customer’s sojourn time is not
dependent of the size of buffer at node 2. Fur-
thermore, the order of nodes (service times)
does not affect the sojourn time of a customer
(see for example Whitt {19]).

The analysis on waiting times at the first
node W' (the time interval from the arrival
until the beginning of the service at node 1) is
much difficult. One can obtain the following
Lemma.

Lemma : In a deterministic two-node tandem
queue with buffers of capacities K; =0 and
3<K,<{ D, has the following structure. If

' = ¢%, then

Dl=mnd'  for n=0

or if ¢'< 6%, then
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D)= no' for n=0,1,-,&—1

Dy=0'"+(n—K,+1)0* for n=¢£

Dy=D;+(n— 86  for n=£+1  (33)

where an integer £€= [k ], [ x] is the smal-

lest integer greater than or equal to x and a
0.2
6i—g .

real number x =T (K272
Proof In order to derive the expression of D},
one considers two exclusive cases on deter-
ministic service times. When ¢' =2 ¢ (no block-
ing occurs at the first node), one can see easi-
ly that since (n—1)o? is always bigger than
(n=K,+1)o* in (32), D,=nd" for all n=0
and £=0 in (25).

When o' <¢® (blocking occurs at the first

node), then one can find an inequality »>1+
0,2
(K2=2)" 577 for n2K, such that (a~1)o"
<(n—K, +1)0". So, one can obtain a unique
2

=1+(K,~2—5

o
value gi—g' . Letting £= [K ]

shows the expressions of D) given in (3.3).

Also, we know & =K; because x =1+(K,
2

—-2) Y+ (Ky—2)= Ky —1

0.2__ 0'1

Now we are able to use Theorem 1 in-
troduced in the previous section to compute
moments of waiting times in a Poisson driven
2-node tandem queues with a finite buffer
even though the simple explicit form ex-
pressions of stationary waiting times at the
first node are not available. Note that if k = o
(as Ky ® k—oo, je. a finite buffer system
becomes an infinite buffer one), then £=0 in
(25). When £&=0, it becomes a simple M/D/1

queue with arrival rate A and constant service
time o'

As done in communication blocking, for ma-
nufacturing blocking one can obtain the ex-
pressions on the components of the random

vector D, as follows :

if Ky=1,

D=0+ (n—1)max{d',0®} for n=>1,

Di=¢'+ n max {d', 6*} for n=0
if K,>2,
D)=no' for »=0,1,-, K,
Di=d"+ max{(n—1)d*,(n— K,)d*}
for n=2K,+1

D2=¢"+ nmax{c',®} for n=0

For systems with manufacturing blocking
we can see the same results as the system
with communication blocking, except for one
difference in the value of the finite capacity
buffer at node 2. That is, one can obtain the
same expressions by substituting £z in (3.1)
and (32) for K;+1. It means that waiting
times at the first node in deterministic 2-node
tandem queues under manufacturing blocking
with Kz buffer at the second node are the
same as those in the system under communi~
cation blocking with K;+1 buffer. This also
says that when two systems have equal size
of buffer capacity the stationary waiting times
in all areas under manufacturing blocking are
always smaller than or equal to those under
communication blocking. Therefore, we can
immediately conclude the following Proposition
since all components of random vector D, are
nonincreasing in K3, and thus W' is also sto-

chastically nonincreasing in Kz (see (2.2)).
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Proposition : In a Poisson driven deterministic
2-node tandem queue with D), satisfying the
structure given in (25), when K; =% and
K,21 then for i=1,2

E[ G( Wz(,‘ommunication Blocking with K, +1 )]

= E [ G (Wtanusacturing Blocking with k.,

and

E [ G( WzCummunication Blocking with K, )]

2 E[ G ( le'lanufacmﬂng Bilocking with K, )]

where G( -) is the same as is defined above
n (2.4).

4. Examples

To illustrate the results we consider a de-
terministic 2-node tandem queue with a finite
buffer. The service times at each node are
given as ¢'=1, ¢*=4. In this particular exam-

ple, the Lyapunov maximum value « is 4.

@ 3] Aol 9g4A2l AR 34
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Using the explicit expressions of the random

vector D, together with Theorem 1 we are
able to compute the exact value of mean wait-
ing times. <Table 1> shows exact and simu-
lation values for the expected waiting time
(time interval between the arrival and just be-
fore the beginning of service) at node 1 under
communication blocking with £;=5. In this
case, the values are given as k = €=5.

Under manufacturing blocking policy the
same system has #=6.3333 and £=7. For vari-
ous traffic intensities the values of mean sta-
tionary waiting times at the first node are
shown in <Table 2>.

From the numerical results, we can see that

our expressions of D) as a function of buffer
capacity are accurate and that the mean val-
ues of waiting times under manufacturing bloc-
king are smaller than or equal to those under

communication blocking. Besides, we can ob-

(Table 1) Waiting Times under Communication Blocking with K;=c0, K,=5

Arrival Intensity 4 E(W Lommunicasion Blocking with'5) Simulation
0.025( p=0.1) 0.01282 0.01247 ¥0.00147
0.05( 0=0.2) 0.02634 0.02537 ¥0.00156
0.125( p=10.5) 0.08851 0.08624 ¥0.00641
0.20( p=10.8) 1.68731 1.6658 ¥0.15152
0.225( p=0.9) 8.35323 8.1551 F0.69208

(Table 2> Waiting Times under Manufacturing Blocking with K; =, K;=5

Arrival Intensity 4 EXW bansacturing Blocking with5) Simulation
0.025( p=0.1) 0.01282 0.01247 70.00147
0.05( p=10.2) 0.02632 0.02535 F0.00154
0.125( p=0.5) 0.07629 0.07473 ¥0.00344
0.20( 0=10.8) 1.14075 1.1470 ¥ 0.13059
0.225( p=10.9) 6.81748 6.6547 F0.64847
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tain the exactly same values of waiting times
at node 1 for one difference buffer capacity
under manufacturing and communication bloc-
king. In particular, we are able to obtain the
exactly same values of mean stationary wai-
ting times for all various traffic intensities, i.e.

i _ i
E( WCommunicaﬁan Blocking with 6 ) - E ( WManufacturing

Blocking with 5 ) for i= 1,2.

5. Conclusion

In this paper, we studied stationary waiting
times in Poisson driven 2-node tandem queues
with deterministic service times. There are
two nodes. One at the first node is infinite,
and the other at the second node is finite. Re-
cursive expressions for waiting times in the
stochastic system with a finite buffer under
communication or manufacturing blocking can
be obtained in {max, +)-algebra notation. From
these explicit expressions we can show the
following fact, which are the same results as
the previous studies. When the capacity of
buffer at the first node is infinite, the system
sojourn time is independent of the capacity of
buffer at the second node and does not depend
on the order of nodes (service times). More-
over, we are able to disclose a relationship on
stationary waiting times in the system with a
finite buffer between under communication bloc—
king and under manufacturing blocking.

This simple version of result can be ex-
tended to more complex (max, +)-linear sys-
tems with finite buffers such as M -node tan-
dem queues, fork-and-join type queues and so
on. Even though it is much difficult to derive
an explicit expression on waiting times in all

areas of the deterministic system with K, =,

K;< o (j=2 -, m), one may be able to find
certain common patterns of the expressions of

the random vector D, under various types of
blocking, which allow one to compute charac-
teristics of stationary waiting times in sto-
chastic systems.
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