Growth and effect of thermal annealing for $AgGaS_2$ single crystal thin film by hot wall epitaxy

Hot wall epitaxy(HWE)법에 의한 $AgGaS_2$ 단결정 박막 성장과 열처리 효과

  • Moon Jongdae (Department of Photoelectronic, Dongshin University)
  • 문종대 (동신대학교 광전자공학과)
  • Published : 2005.02.01

Abstract

A stoichiometric mixture of evaporating materials for AgGaS₂ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, AgGaS₂ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were 590℃ and 440℃, respectively. The temperature dependence of the energy band gap of the AgGaS₂ obtained from the absorption spectra was well described by the Varshni's relation, E/sub g/(T) = 2.7284 eV - (8.695×10/sup -4/ eV/K)T²/(T + 332 K). After the as-grown AgGaS₂ single crystal thin films was annealed in Ag-, S-, and Ga-atmospheres, the origin of point defects of AgGaS₂ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of V/sub Ag/, V/sub s/, Ag/sub int/, and S/sub int/ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Ag-atmosphere converted AgGaS₂ single crystal thin films to an optical n-type. Also, we confirmed that Ga in AgGaS₂/GaAs crystal thin films did not form the native defects because Ga in AgGaS₂ single crystal thin films existed in the form of stable bonds.

AgGaS₂ 단결정 박막을 수평 전기로에서 합성한 AgGaS₂ 다결정을 증발원으로하여, hot wall epitaxy(HWE) 방법으로 증발원과 기판(반절연성-GaAs(100))의 온도를 각각 590℃, 440℃로 고정하여 성장하였다. 이때 단결정 박막의 결정성은 광발광 스펙트럼과 이중결정 X-선 요동곡선(DCRC)으로 부터 구하였다. AgGaS₂의 광흡수 스펙트럼으로부터 구한 온도에 의존하는 에너지 밴드갭 E/sub g/(T)는 Varshni 공식에 fitting한 결과 E/sub g/(T) = 2.7284 eV - (8.695×10/sup -4/ eV/K)T²/(T + 332 K)를 잘 만족하였다. 성장된 AgGaS₂ 단결정 박막을 Ag, Ga, S 분위기에서 각각 열처리하여 10K에서 photoluminescience(PL) spectrum을 측정하여 점 결함의 기원을 알아보았다. PL 측정으로 부터 얻어진 V/sub Ag/, V/sub s/, Ag/sub int/, 그리고 S/sub int/는 주개와 받개로 분류되어졌다. AgGaS₂ 단결정 박막을 Ag 분위기에서 열처리하면 n형으로 변환됨을 알 수 있었다. 또한, Ga 분위기에서 열처리하면 열처리 이전의 PL 스펙트럼을 보이고 있어서. AgGaS₂ 단결정 박막에서 Ga은 안정된 결합의 형태로 있기 때문에 자연 결함의 형성에는 관련이 없음을 알았다.

Keywords

References

  1. S. Wagner, J.L. Shay, P. Migliorato and H.M. Kasper, 'Study of the band edge in $AgGaS_2$ by photovoltaic effect', Appl. Phys. Lett. 25 (1974) 434 https://doi.org/10.1063/1.1655537
  2. I. Shih, A. Vahid Shahidi and C.H. Champness, 'Transport properties of $AgGaS_2$ single crystal', J. Appl. Phys. 56 (1984) 421 https://doi.org/10.1063/1.333981
  3. P. Migliorato, J.L. Shay and H.M. Kasper, 'Heterojunction formation in PbS/$AgGaS_2$ ternary solar cells', J. Elec. Mate. 4 (1975) 209 https://doi.org/10.1007/BF02655402
  4. L.L. Kazmerski, P.J. Ireland, F.R. White and R.B. Cooper, 13th. IEEE Photovoltaic Specialistic Conf. Record (IEEE, Princeton 1978) p. 184
  5. I.W.F. Russel, B.N. Baronand and R.E. Rocheleau, 'Photoluminescience and phconductivity measurements on $AgGaS_2$', J. Vac. Sci. Technol. B2(4) (1984) 840
  6. D.C. Hanna, V.V. Rampel and R.C. Smith, 'Saturation Photoconductivity in $AgGaS_2$', Opt. Commun. 8 (1973) 151 https://doi.org/10.1016/0030-4018(73)90160-0
  7. W. Jantz and P. Koidi, 'Optical absorption of Co-doped $AgGaS_2$', Appl. Phys. Lett. 31 (1977) 99
  8. R.J. Seymour and F. Zemike, 'Growth by directional freezing of $AgGaS_2$ and diffused homojunctions in bulk material', Appl. Phys. Lett. 29 (1976) 705 https://doi.org/10.1063/1.88933
  9. J.C. Bergman and S. Kurtz, 'X-ray photoelectron and Auger electron spectroscopic analysis of surface treatments and electrochemical decomposition of $AgGaS_2$ photoelectrodes', Mat. Sci. Eng. 5 (1970) 235
  10. B. Tell and H.M. Kasper, 'The optical properties of $AgGaS_2$ crystal grown by the sublimation method', Phys. Rev. B6. (1972) 3008
  11. P.W. Yu and Y.S. Park, 'The optical properties of $AgGaS_2$ thin films', J. Appl. Phys. 45 (1974) 825
  12. H. Matthes, R. Viehman and N. Marschell, 'The characterization of $AgGaS_2$ crystal grown by the sublimation method', Appl. Phys. Lett. 26 (1975) 237 https://doi.org/10.1063/1.88134
  13. P.W. Yu, J. Manthuruthil and Y.S. Park, 'Crystal structrue and two-phonon absorption in $AgGaS_2$', J. Appl. Phys. 45 (1974) 3694
  14. H.A. Chedzey, D.J. Marshall, H.J. Pakfitt and D.S. Robertson, 'The band structure of $AgGaS_2$ calculated by the pseudopotential method', J. Appl. Phys. 4 (1971) 1320
  15. P. Korczak and C.B. Staff, 'The optical properties of $AgGaS_2$ single crystal', J. Crystal Growth 24 125 (1974) 386 https://doi.org/10.1016/0022-0248(74)90342-X
  16. A. Smith, 'Growth by directional freezing of $AgGaS_2$ and diffused homojunctions in bulk material', J. Vac. Sc. Technol. 15 (1987) 353
  17. J. Arias, M. Zandman, J.G. Pasko, S.H. Shin, L.D. Bubulac, R.E. Dewanes and W.E. Tennart, 'Optical absorption of co-doped $AgGaS_2$', J. Appl. Phys. 69 (1991) 2143
  18. K.K. Muravyeva, I.P.K. Kinm, V.B. Aleakvsky and I.N. Anikin, 'Growth by directional freezing of $AgGaS_2$ and diffused homojunctions in bulk material', Thin Solids Films 10 (1972) 355 https://doi.org/10.1016/0040-6090(72)90206-4
  19. J.T. Calow, D.L. Kirr and S.J.T. Owen, 'Saturation Photoconductivity in $AgGaS_2$', Thin Soild Films 9 (1970) 409
  20. J.E. Genthe and R.E. Aldrich, 'Doped $AgGaS_2$ thin films as anode materials for organic light emitting diodes', Thin Solid Films 8 (1971) 149 https://doi.org/10.1016/0040-6090(71)90007-1
  21. B.D. Cullity, Elements of X-ray Diffractions (Addson-Welsey, 1985) Chap. 11
  22. J. Parkes and M.J. Hampshire, 'Violet luminescience emitted from $AgGaS_2$ films deposited on Si substrate by rf magnetron sputtering', J. Appl. Cryst. 6 (1973) 414 https://doi.org/10.1107/S0021889873009027
  23. Elizabeth A. Wood, Crystal Orientation manual, Columbia university press (1963)
  24. H. Fujita, 'Electron radition damage in cadium-selenide crystal at liquid-helium temperrature', J. Phys. Soc. Jpn. 20 (1965) 109
  25. V.P. Varshni, 'Far-infrared optical absorption of $Fe^{2+}$ in ZnSe', Physica 34 (1967) 149
  26. D.G.D. Boy, H.M. Kasper and McFee, J.H., IEEE, 'Luminescence and impurity states in $AgGaS_2$', J. Quantum Electro QE7, 563 (1971)
  27. J.I. Pankove, Optical Process in Semiconductors (Dover, Publications, New York, 1971) p. 36
  28. B. Gudden and R. Pohl, Z., 'Fabrication of semiconducting $AgGaS_2$ nanobelts using a halide source and their photoluminescience properties', Physik 3 (1920) 98 https://doi.org/10.1007/BF01330924
  29. B. Guddenand R. Pohl, Z. 'Temperature dependence of excitionic luminescience from nanocrystalline $AgGaS_2$ films', Physik 5 (1991) 176 https://doi.org/10.1007/BF01329251
  30. R.H. Bube, Photoconductivity of Solids (Wiley, New York, 1960) p. 130
  31. B. Tell and H.M. Kasper, 'Influence of the annealing conductions on the properties of $AgGaS_2$ thin films', Phys. B4 (1971) 4455