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Abstract

This paper proposes a new method for accelerating the search speed of genetic algorithms by taking derivative evaluation and
conditional random selection into account in their evolution process. Derivative evaluation makes genetic algorithms focus on the
individuals whose fitness is rapidly increased. This accelerates the search speed of genetic algorithms by enhancing exploitation
like steepest descent methods but also increases the possibility of a premature convergence that means most individuals after a
few generations approach to local optima. On the other hand, derivative evaluation under a premature convergence helps genetic
algorithms escape the local optima by enhancing exploration. If GAs fall into a premature convergence, random selection is used
in order to help escaping local optimum, but its effects are not large. We experimented our method with one combinatorial
problem and five complex function optimization problems. Experimental results showed that our method was superior to the

simple genetic algorithm especially when the search space is Iarge.
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1. Introduction

Genetic  Algorithms (GAs) as robust and systematic
optimization paradigms have been applied to many scientific
and engineering problems including even those that
conventional methods could not solve [1-9]. The performances
0. GAs are dependent on encoding schemes, recombination
and evalnation operations, parameters of operations, and the
algorithm itself [1,3,6,7]. A lot of researches for improving
performances of GAs by adopting new methods have been
introduced so far [9-18]. They are classified with two main
sireams such as adapting operator probabilities of GAs
[9,10,12-16] and modifying crossover and mutation operators
themselves [11,13,17,18].

This paper proposes a new method for improving the
performances of GAs by accelerating the search speed of GAs.
Unlike previous methods our method brings the evaluation
cperation of GAs into focus. In most GAs, individuals (in
other words, chromosomes) are evaluated by a fitness function
that represents how much each individual fits into the goal.
Such evaluation, however, often makes GAs fall into a
premature  convergence  [3,5,6,8,17]. The  premature
convergence occurs when a few comparatively highly fit (but
not optimal) individuals are rapidly come to dominate the
population, causing it to converge on local optima [5]. When
2 GA falls into a premature convergence, it is very difficult
for the GA to escape this because further optimization by
rmutation is quite slow. This premature convergence degrades
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the performances of GAs [17].

In this paper, we propose a derivative evaluation that
assigns fitness of individuals calculating how much offsprings
are improved from their parents. This fitness is called
derivative fitness. In case that offsprings are worse than their
parents, their derivative fitness becomes zero. Therefore, even
if an individual has very large fitness, if the individual is
worse than its parents, its derivative fitness becomes zero.
This makes GAs focus only on individuals whose fitness is
rapidly increased. This derivative evaluation has similar
features to the steepest descent methods. That is, that makes
GAs approach to global optima quickly by enhancing
exploitation but may also increase the possibility of a
premature convergence. On the other hand, the derivative
evaluation after reaching local optima helps GAs get out of
the convergence by enhancing exploration. If all individuals
have zero fitness by the derivative evaluation, the parents for
next generation are selected by random. We call this
conditional random selection. This conditional random
selection reinforces exploration of GAs and results in making
GAs escape the local optima and search new areas to find
global optima. But, it was found from experiments that its
effect is not large because the frequency of random selection
is quite small.

Our method is experimented with one combinatorial
problem and five complex function optimization problems.
Experimental results showed that our method was superior to
simple genetic algorithm especially when search space is large.
Our method is simple but effective, so it can be easily
incorporated into existing GAs for improving their
performances.

This paper is organized as follows. Section 2 describes the
derivative evaluation and conditional random selection method.
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Figure 1: Comparison between

In section 3, experimental environments and results are
discussed. This paper concludes in section 4.

2. Derivative Evaluation and Conditional
Random Selection

In most existing GAs, the evaluation operation assigns the
fitness of individuals using a fitness function that represents
how much individuals fit into the goal [1,9,10,13-17]. Since
such evaluation calculates the fitness of an individual with
only the individual, a few comparatively highly fit (but not
optimal) individuals in an initial population are repeatedly
selected as parents for next generation. Finally they are
rapidly come to dominate the population and result in
converge on local optima. This phenomenon is called
premature convergence [1,3,5,6,8,17]. When a GA falls into a
premature convergence, it is very difficult for the GA to
escape this because further optimization by mutation is quite
slow. This premature convergence that is one of the main
problems in GAs research areas makes the performances of
GAs degrade.

If the highly fit individuals, however, rapidly converges to
a global optimum, the premature convergence is good for
GAs, not a problem. That is, in order to improve the
performances of GAs, the individuals of GAs should fast
approach to optima because they may be global optima and if
not, they should fast be distributed at which they converged.
Let's consider Figure 1. In existing methods, individuals are
evaluated by a fitness function A x). At generation 7, four
individuals depicted as dark circles in Figure 1 are evaluated
as the position of y axis. At {+1 generation, if two
individuals depicted as dark circles are selected as parents and
the left one of them generates three white offsprings and right
one of them generates one white offspring respectively, then
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existing methods and our method

the three white offsprings dominate the population because
their fitness is greater than that of the right one offspring. As
a result, GAs fall into a premature convergence as shown at
the ¢+2 generation. In the other hands, the right one
offspring at 7+ 1 generation in proposed method have high
probability to be selected as parents at next generation
because the fitness of right offspring is greater than that in
existing methods by adopting new fitness (see more detailed
definition of new fitness given at Definition 2 below). As
shown at the ;+2 generation in proposed method, individuals
that fall into a premature convergence have low probability to
be alive because their new fitness is less than the right
offsprings. From these properties, we can find that derivative
evaluation using gradient informations enables GAs to fast
approach to global optimum areas similar to hill climbing
methods. Moreover, when most individuals fall into local
optimum areas, derivative evaluation also helps GAs get out of
premature  convergence because prematurely convergent
individuals will not be nearly selected as parents due to their
small fitness. In most GAs, of course, two individuals are
selected as parents and generate two offsprings. But, we
explained under assumption that one individual generates one
offspring for simplicity at above description.

Based on above observation, we propose a derivative
evaluation and conditional random selection for enhancing the
performances of GAs. In order to describe derivative
evaluation, we define parents fitness and derivative fitness as
follows. In this definition, we call the fitness obtained by a
fitness function original fitness.

Definition 1: Parents fitness and derivative fitness
Let original fitness of sth individual at ¢ generation be

{8 and original fitness of parents of jth individual at ¢—1
generation be f{t—1) and f,{¢t—1), respectively. Then, the
parents fitness f(# and derivative fitness /f7(f) of ith
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individual are defined as:
fty = LU=DEAED

= avg(F{t—1), fi{t—1)),
A2 =D £, (0

where 1<i, j, k<N and N is the number of individuals.
At first generation ( #=1), individuals are randomly created
and all parents fitness f£0), f,(0), wherel<j, k<N are
regarded as zero. As shown in equation 1, we take an average
value of original fitness of parents individuals as typical
fitness of parents. We experimented with the other operators
for parents fitness such as min and max. But the average
operator shows the best performance. Derivative fitness can be
viewed as a measure of how an individual is improved from
‘ts parents. This fitness can also be regarded as a gradient of
fitness. As gradient descendant methods, GAs focus on
individuals with large derivative fitness as long as possible.
The larger derivative fitness of an individual is, the more the
individual must be selected as parents for next generation.
From this viewpoint, we define new fitness with derivative
fitness as follows.

Definition 2: New fitness

Let the derivative fitness of sth individual be defined as

definition 1, then the new fitness fi{(d of the jth individual
is defined as:

if F2(H>0
otherwise. (2)

r ={f70

We use this new fitness as fitness of individuals. If an
individual is improved from its parents, then fitness of the
individual is positive real value. Otherwise, fitness of the
individual is zero. This evaluation called derivative evaluation
has two advantages compared to original evaluation. First, this
evaluation can make GAs avoid the premature convergence
phenomenon because an individual whose original fitness is
very large will not be selected as parents for next generation
as long as it is not improved from its parents. That is,
derivative evaluation makes GAs focus on evolved individuals
not the individuals whose original fitness is large. Second, as
a gradient method this evaluation accelerates search speed.

At initial generations, since most individuals are improved
from their parents, most individuals has positive fitness not
zero. However, after most individuals approaches local or
global optimum areas, improvements (positive evolution) of
individuals are difficult. At this situation, all individuals
sometimes have zero fitness. Also, selection of parents in
proportional to the fitness is not possible. Under this
condition, we used random selection in order to help GAs get
out of local optimum. But, it was found from experiments that
its effect is not large because the condition rarely occurs. In
fact, we experimented another selection (named constant
selection) as well as random selection. But, none of them
dominates the others.

3. Experimental Results and Discussion

Our proposed method was tested on one combinatorial
problem and five typical function optimization problems. The
six problems are described as follows.

T ,=1,
if T #1,

fo =100(x3—x,) 2+ (1—x )2,
where—2.048<x ;<2.048

h =
fi= ;Zlmi{m/ !

m ;=0

25
£y = 0.002+ 3 —L ,
7+ > (i al[1)®
where—65.536 <x,<65.536

Fo= 05— sin(\/x%fxg)gin(\/x%+x%)—0:5

£ V0T 1.0+ 0,001 (a2 + #D)(1.0+0.001(#2 +42))
where— 10 <x,;< — 10

fy = (af+x)) "Psin(50(x} +x5) ©1+ 17,
where—10<x,< — 10

- 2, _x% 2( X )

o = 1% Zigopp — M\ cos (v 1))

where—5.12<x ;<5.12

The f, problem is a type of pattern matching problems.
That is, the problem is to find target bit pattern 7. Each
individual is evaluated by the number of matching bits
between the individual 7 and target 7. Therefore, optimum
fitness is same as the number of bits 4 Five function
optimization problems f; to f; used in many other papers
called Delong function 2 (f;), Delong function 5 (/3),
Mexican hat function ( f;), Shafer function 2 (f5), Rastrigin

function 2 ( f5), respectively. Figure 2 shows the input-output
relations of six functions. The performances of proposed
method have been measured and compared to those of original
one. Except the derivative evaluation and conditional random
selection, all other parameters--initial individuals, the
probabilities of crossover and mutation, the population size,
and the length of bit strings--are same in experiments. We set
the parameters for experiments as shown in Table 1. Since
GAs generally show somewhat different results according to
the initial individuals, we measured experimental results with
average values of 10 runs using different random number
seeds. When GAs find the optimal solution, the number of
generations at that generation is recorded and the results of 10
runs are averaged. This averaged value is an experimental
result for one experiment. Table 2 shows total experimental
results of six problems.

Tablel: Parameter setting for experiments

Parameters values
crossover probability ( P.) 0.6

mutation probability ( 2,.) 0.05
population size 10

The length of bit strings 16, 22, 28 bits
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Figure 2: Experimental functions

In Table 2, NGA and SGA mean new genetic algorithm
and simple genetic algorithm devised by Goldberg [1] and
SGA/NGA at the seventh column is the ratio of avg. values
of two methods. As shown in Table 2, NGA is superior to
SGA at nearly all experiments except only one case (function:
f5 and bit strings: 16). Clearly, the optimum value of f; is
only one and its value is the same as the length of bit strings.
The optimum value of f; is only one at x;=-—2.048 and

x;=—2.048 and optimum value is about 3905.9. Similarly,
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function f3 has only one optimum value (about 498.9) at
x,=—232.509984 and x,=—32.509984. On the other
hands, function f;, fs, and /s has multiple optima. Multiple
optima of function f; are at the smallest circle of Mexican
hat and its value about 0.99. Function fs has multiple optima
at four peaks near (¥ =—10 and x,=—10, x;,=—10 and
%3=10, ;=10 and x,=—10, ;=10 and x»=10) and

its value is about 14.3. Function f; has four optima at four
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Table 2: Experimental results

. L NGA SGA
function bit strings SGA/NGA
avg. dev. avg. dev.
16 19.6 13.81 536.7 730.76 274
£ 22 27.0 10.27 23810.2 12153.96 881.9
28 571 46.11 589162.7 532250.75 10318.1
16 1023.3 1324.44 2891.9 3307.52 2.8
fs 22 944.9 889.46 11228.1 9526.42 11.9
28 13329 1324.12 598051.8 473070.84 448.7
16 492.0 446.50 2821.7 2557.65 57
fs 22 1574.4 1698.54 16541.3 12669.00 10.5
28 14410.5 14757.53 1140458.0 1051099.34 79.1
16 2464.6 1282.42 13457.1 8744.59 5.5
fu4 22 112654 11031.59 357673.0 374413.34 317
28 94974.1 56076.43 19940078.9 12961757.47 209.9
16 21822 1444.43 1576.6 1299.92 0.7
fs 22 26620.3 23979.09 85613.2 39818.25 32
28 888116.5 678674.55 3918794.9 3520677.02 44
16 1475.9 1716.09 6694.2 6588.69 4.5
£ 22 2572.2 2441.18 138874.2 102389.13 53.9
28 20772.5 20354.83 216705354 10932710.63 1043.2
Table 3: Comparisons between random selection and constant selection
. i . random selection constant selection
function bit strings
avg. dev. avg. dev.
16 19.6 13.81 19.0 7.20
11 22 27.0 10.27 68.7 38.13
28 57.1 46.11 159.6 125.80
16 1023.3 1324.44 674 53.51
fy 22 944.9 889.46 1113 73.96
28 13329 1324.12 619.8 622.79
16 492.0 446.50 637.3 344,14
fs 22 15744 1698.54 4396.0 5888.24
28 14410.5 14757.53 378164 43015.27
16 2464.6 1282.42 3542.8 3231.97
7y 22 11265.4 11031.59 13247.7 8905.23
28 94974.1 56076.43 163548.9 150119.81
16 21822 144443 3289.6 2982.51
fs 22 26620.3 23979.09 29898.4 23837.99
28 888116.5 678674.55 1525107.8 1731978.42
16 1475.9 1716.09 4414 475.30
I 22 2572.2 2441.18 3013.7 343798
28 207725 20354.83 24565.6 20391.95

peaks near (%;=-0.04 and x,=-—4.47, x;,=—0.04 and

x2=4.47,

relatively small local optima such as fi, fe, and fs. Even

x,=0.04 and x

.x1=0.04

when the local optima is large as the cases of f3 and fy,

and NGA shows relatively good performances. In the function f3,

x;=4.47) and its value is about 2.003. NGA shows very
good performances when a function is simple, in other words,

however, the performance of NGA is not good relatively than
the others. This may be because the four peaks of global
optima is far from the local optima in comparison that the
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Table 4: Experimental results at 30

population size

. . NGA SGA
function bit strings SGA/NGA
avg. dev. avg. dev.
16 8.7 4.90 88.0 67.24 10.1
£y 22 11.0 3.19 23919 2207.02 2174
28 16.4 9.06 46576.2 43825.83 2840.0
16 137.1 231.20 950.8 1201.40 6.9
s 22 197.1 149.37 6410.0 7021.05 325
28 146.6 170.99 72868.3 76501.18 497.0
16 86.3 70.83 5840.7 5706.90 67.6
f3 22 7159 690.48 4411.8 5155.09 6.1
28 1548.6 1185.17 136731.8 102911.63 88.2
16 1530.3 1733.36 6932.6 5892.90 45
£y 22 2644.3 2525.05 116707.3 87334.37 441
28 2005.1 1780.01 5490873.5 5368471.48 27384
16 979.2 927.21 2253.8 2009.12 23
fs 22 8751.9 8427.41 13964.1 14163.65 15
28 131702.8 120836.44 751085.6 919829.84 57
16 3940 624.03 4095.4 2841.02 10.3
e 22 550.3 482.35 55268.4 42305.13 100.4
28 8745 611.58 2458014.7 1746689.23 2810.7

other functions. From this observation, we can drive some
parameters for measuring the degree of difficulty of
optimization as follows. Optimization will be affected by
following factors.

e The number of local peaks that include local optima
(the fewer, the better).

e The distances between local peaks (the nearer, the
better).

e The areas of local peaks (the narrower, the better).

e The difference between local optima (the larger, the
better)

o The number of global peaks that include global optima
(the fewer, the better).

o The distances between global peaks (the nearer, the
better).

e The areas of global peaks (the broader, the better).

o The distances between local peaks and global optima

f(x) ¢

(the nearer, the better).
e The difference between the values of local maximum
and global maximum (the larger, the better)

From the viewpoints of above seventh parameters, the best
simple function is the one which has broad global peak with
no local peak. On the other hands, the function that has many
global peaks whose areas are narrow and whose locates are
broadly distributed and many local peaks whose areas are
broad is the best difficult function to optimize. Figure 3
shows the best simple and relatively complicated functions to
optimize. Therefore, function /5 is the most difficult function.
In this function, NGA shows relatively poor performances than
the others. This indicates that the other factors for this kind of
problems must be considered. Even at the function Jfs,
however, NGA shows better performances than SGA at the
length of bit strings 22 and 28. This shows that the NGA is

fx) 4

(a)

®

Figure 3: The best simple and complicated functions to optimize
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more effective as the search space is larger. At all problems,
NGA shows better performance as the search space is larger.

In order to show the effect of selection method when new
filmess of all individuals is zero, a constant selection method
is applied. In this selection method, a middle individual in
population is unconditionally selected as parents. For example,
when the population size is 10, 5th individual (10 / 2 = 5) is
unconditionally selected when new fitness of all individuals is
zero. This situation rarely occurs because the probability that
all individuals have zero new fitness is very low. Table 3
shows comparisons between random selection and constant
selection. As shown in table 3, random selection in some
functions is better than constant selection, in other functions
vice versa. Also, the difference between two methods is small
in comparison to the SGA. We can not conclude which
method dominates the others.

In order to show the effect of population size, we
experimented our method with 30 population size. Table 4
shows the experimental result when population size is 30. In
this experiment, we used constant selection for NGA. It is
intuitively natural that as the population size is larger and
lurger, the number of generation that find optimum solutions
is more and more decreased. As shown in table 4, all average
values are less than those of table 2. In most results, the trend
of results is quite similar to the table 2. The ratio between
SGA and NGA is better than the table 2 in most cases. This
indicates that our method is more effective as the population
size is large. Very similar to the table 2, the SGA/NGA ratio

at function /5 is very low in comparison to the other results.
This means that more effective method for this type of
functions must be revised. We will do the work as a further
work later,

4. Conclusion

In this paper, we introduced a derivative evaluation and
conditional random selection method for accelerating the
optimization capability of genetic algorithms. Proposed method
have less possibility of a premature convergence than existing
GAs because it enhances the exploitation and exploration by
focusing on rapidly evolved individuals and randomly selected
parents under certain condition. We tested proposed method
with six typical problems--one combinatorial problem and five
function optimization problems. Experimental results showed
that our method at most problems was superior to the SGA
especially when the search space is large. In the problems
having a high degree of difficulty, NGA shows relatively poor
performances. A new accelerating method for such problems is
remained as further works.
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