DOI QR코드

DOI QR Code

Lipid Characteristics of Fish Frame as a Functional Lipid Resource

기능성 지질 추출 소재로서 Fish Frames의 지질성분 특성

  • Kim, Jeong-Gyun (Division of Marine Bioscience/Institute of Marine Industry, Gyeongsang National University) ;
  • Han, Byung-Wook (Division of Marine Bioscience/Institute of Marine Industry, Gyeongsang National University) ;
  • Kim, Hye-Sook (Division of Marine Bioscience/Institute of Marine Industry, Gyeongsang National University) ;
  • Park, Chan-Ho (Division of Marine Bioscience/Institute of Marine Industry, Gyeongsang National University) ;
  • Chung, In-Kwon (Division of Marine Bioscience/Institute of Marine Industry, Gyeongsang National University) ;
  • Choi, Yeung-Joon (Division of Marine Bioscience/Institute of Marine Industry, Gyeongsang National University) ;
  • Kim, Jin-Soo (Division of Marine Bioscience/Institute of Marine Industry, Gyeongsang National University) ;
  • Heu, Min-Soo (Division of Marine Bioscience/Institute of Marine Industry, Gyeongsang National University)
  • 김정균 (경상대학교 해양생물이용학부/해양산업연구소) ;
  • 한병욱 (경상대학교 해양생물이용학부/해양산업연구소) ;
  • 김혜숙 (경상대학교 해양생물이용학부/해양산업연구소) ;
  • 박찬호 (경상대학교 해양생물이용학부/해양산업연구소) ;
  • 정인권 (경상대학교 해양생물이용학부/해양산업연구소) ;
  • 최영준 (경상대학교 해양생물이용학부/해양산업연구소) ;
  • 김진수 (경상대학교 해양생물이용학부/해양산업연구소) ;
  • 허민수 (경상대학교 해양생물이용학부/해양산업연구소)
  • Published : 2005.03.01

Abstract

Lipid characteristics of 6 species of fish frame (armored weasel-fish, AW; chum salmon, CS; spanish mackerel, SM; common mackerel, CM; conger eel, CE and skipjack tuna, ST) were studied by determining total lipid (TL) contents, lipid classes, and fatty acid composition. The highest yield of bone was obtained from ST frame (64.2%), followed by CS frame (57.9%), CE frame (54.6%), A W frame (41.6%), SM frame (41.7%), and CM frame (32.6%). The highest neutral lipid content was also found in total lipid (TL) from SM bone (23.3 g/100 g), followed by TL from CE bone (21.5 g/100 g), CS bone (16.0 g/100 g), and CM bone (15.5 g/100 g), while those from ST and A W bones were 7.2 g/100 g and 0.4 g/100 g, respectively. The prominent lipid classes of neutral lipids (NL) from all fish bones and muscles were triglyceride (TG), however, which was much lower in AW than in other fishes. The percentages of EPA and DHA in NL from fish bone were in the descending order of CS (29.3%), ST (27.1%), AW (27.0%), CM (25.7%), SM (21.6%), and CE (14.9%). Based on the lipid characteristics, the CS frame was the best resource for extraction of a functional lipid.

수산가공 부산물인 fish frame을 기능성 지질 추출소재로서의 이용 가능성을 검토하기 위하여 6종의 fish frame(붉은메기, 연어. 삼치, 고등어, 붕장어, 가다랑어 등)에 대한 지질성분 특성에 대하여 살펴보았다. Fish frame에 대한 어류 뼈의 수율은 가다랑어가 64.2%로 가장 높았고, 다음으로 연어(57.9%), 붕장어(54.6%), 붉은 메기(42.0%), 삼치(41.7%)등의 순이었으며, 고등어가 32.6%로 가장 낮았다. 어류 뼈 유래 총 지질 중 중성 지질의 함량은 삼치가 23.3g/100g으로 가장 많았고, 다음으로 붕장어 (21.5 g/100 g), 연어 (16.0 g/100 g), 고등어 (15.5 g/100 g)의 순이었으며, 가다랑어와 붉은 메기의 경우 다른 4종의 어류에 비하여 확연히 낮았다. 붉은 메기를 제외한 5종 어류의 중성지질 모두가 근육 및 뼈 지방에 관계없이 TG가 주성분(근육지방, 71.9-83.2%; 뼈지방, 74.2-86.9%)이었고, 다음으로 근육지방의 경우, FFA(8.1-19.2%), 뼈지방의 경우 FS(5.5-l5.5%)이었다. 붉은 메기의 경우, 중성지질의 주성분인 TG의 조성비(근육지방, 48.6%; 뼈지방, 45.3%)가 다른 어류에 비하여 확연히 낮았고, FFA의 조성비 또한 근육지방(41.6%) 및 뼈지방 (43.4%)에 관계없이 모두 5종의 어류에 비하여 확연히 높았다. 어류 뼈의 중성 지질의 EPA+DHA 조성은 연어 가 29.3%로 가장 높았고, 다음으로 가다랑어(27.1%), 붉은 메기(27.0%), 고등어(25.7%), 삼치(21.6%)의 순이었고, 붕장어의 경우 14.9%에 불과하였다. 이상의 수율, 중성지질 함량, 유리지방산 조성 및 EPA+DHA 조성 비율의 결과로 미루어 보아 기능성 지질 추출원으로는 연어가 가장 우수하였고, 다음으로 삼치, 붕장어, 고등어, 가다랑어 등의 순이었으며, 붉은 메기의 경우 부적절하다고 판단되었다.

Keywords

References

  1. Kim SK, Park PJ, Kim GH. 2000. Preparation of sauce from enzymatic hydrolysates of cod frame protein. J Korean Soc Food Sci Nutr 29: 635-641
  2. Wendel AP. 1999. Recovery and utilization of Pacific whiting frame meat for surimi production. PhD Dissertation. Oregon State University, USA
  3. Kim JS, Choi JD, Koo JG. 1998. Component characteristics of fish bone as a food source. Agric Chem Biotechnol 41: 67-72
  4. Kim JS, Yang SK, Heu MS. 2000. Component characteristics of cooking tuna bone as a food resource. J Korean Fish Soc 33: 38-42
  5. Shizuki O. 1981. Fish bone. New Food Industry 23: 66-72
  6. Lee CK, Choi JS, Jeon YJ. Byun HG, Kim SK. 1997. The properties of natural hydroxyapatite isolated from tuna bone. J Korean Fish Soc 30: 652-659
  7. Watanabe H, Takewa M, Takai R, Sakai Y. 1985. Cooking rate of fish bone. Bull Japan Soc Fish 54: 2047-2050
  8. Tsutagawa Y, Hosogai Y, Kawai H. 1994. Comparison of mineral and phosphorus contents of muscle and bone in the wild and cultured horse mackerel. J Food Hyg Soc Japan 34: 315-318
  9. Kim JS, Cho ML, Heu MS. 2000. Preparation of calcium powder from cooking skipjack tuna bone and its characteristics. J Korean Fish Soc 33: 158-163
  10. Kim JS, Park JW. 2004. Characterization of acid-soluble collagen from Pacific whiting surimi processing byproducts. J Food Sci 69: C637-642 https://doi.org/10.1111/j.1365-2621.2004.tb09912.x
  11. Carpo C, Himelbloom B. 1994. Quality of mince from Alaska pollack (Theragra chalcograrnrna) frames. J Aqua Food Prod Tech 3: 7-17 https://doi.org/10.1300/J030v03n01_03
  12. Benjakul S. 1997. Utilization of wastes from Pacific whiting surimi manufacturing-proteinase and protein hydrolysate. PhD Dissertation Oregon State University, USA
  13. AOAC. 1995. Official methods of analysis. 16th ed. Association of official analytical chemists, Washington DC
  14. Bligh EG, Dyer WJ. 1959. A rapid method of lipid extraction and purification. Can J Biochem Phsiol 37: 911-917 https://doi.org/10.1139/o59-099
  15. Juaneda P, Rocquelin G. 1985. Rapid and convient separation of phospholipid and nonphosphorus lipids from rat heart using silica cartridge. Lipids 20: 40-41 https://doi.org/10.1007/BF02534360
  16. 藤野安彦. 1980. 脂質分析法入門. 學會出版センタ一. 東京. p 108
  17. Kim JS, Yeum DM, Kang HG, Kim IS, Kong CS, Lee TG, Heu MS. 2002. Fundamentals and applications for canned foods. 2nd ed. Hyoil Publishing Co., Seoul, Korea. p 276-277
  18. Zama K. 1970. Oxidation of the phospholipids of aquatic animals, in symposium on oxidation of marine animal lipids. Bull japan Soc Sci Fish 36: 867-868
  19. Bosund I, Granrot B. 1969. Lipid hydrolysis in frozen baltic herring. J Food Sci 34: 13-17 https://doi.org/10.1111/j.1365-2621.1969.tb14352.x
  20. Kim JS, Ha JH, Lee EH. 1997. Refining of squid viscera oil. Agric Chem Biotechnol 40: 294-300
  21. Oh KS, Lee EH. 1988. Studies on the processing of powdered Katsuobushi and its flavor constituents. 2. Lipid components of powdered Katsuobushi. Bull Korean Fish Soc 22: 19-24
  22. Jeong BY, Moon SK, Choi BD, Lee JS. 1999. Seasonal variation in lipid class and fatty acid composition of 12 species of Korean fish. J Korean Fish Soc 32: 30-36

Cited by

  1. Food Component Characteristics of Skipjack (Katsuwonus pelamis) and Yellowfin Tuna (Thunnus albacares) Roes vol.39, pp.1, 2006, https://doi.org/10.5657/kfas.2006.39.1.001
  2. Preparation of Snack Using Residues of Fish Gomtang vol.37, pp.1, 2008, https://doi.org/10.3746/jkfn.2008.37.1.97
  3. Assessment of the in Vitro Antithrombotic Properties of Sardine (Sardina pilchardus) Fillet Lipids and Cod Liver Oil vol.1, pp.1, 2015, https://doi.org/10.3390/fishes1010001
  4. Physicochemical Profiles of Chub Mackerel Scomber japonicus Bones as a Food Resource vol.17, pp.2, 2014, https://doi.org/10.5657/FAS.2014.0175
  5. 생선 곰탕의 추출소재로서 Fish Frame의 식품학적 특성 vol.36, pp.11, 2007, https://doi.org/10.3746/jkfn.2007.36.11.1417
  6. 넙치 프레임을 이용한 스낵의 제조 및 특성 vol.36, pp.5, 2007, https://doi.org/10.3746/jkfn.2007.36.5.651
  7. 연어(Oncorhynchus keta) 프레임육을 활용한 어묵의 맛, 냄새 및 영양 특성 vol.53, pp.3, 2005, https://doi.org/10.5657/kfas.2020.0281
  8. 붕장어(Conger myriaster) 조미소스를 활용한 조미김(Pyropia yezoensis)의 영양특성 vol.53, pp.3, 2005, https://doi.org/10.5657/kfas.2020.0382