The influence of mechanical damage on the formation of the structural defects on the silicon surface during oxidation

규소 결정 표면의 구조 결함의 형성에 미치는 기계적 손상의 영향

  • Kim, Dae-Il (Department of Material Science & Engineering, University of Incheon) ;
  • Kim, Jong-Bum (Department of Material Science & Engineering, University of Incheon) ;
  • Kim, Young-Kwan (Department of Material Science & Engineering, University of Incheon)
  • 김대일 (인천대학교 신소재공학과) ;
  • 김종범 (인천대학교 신소재공학과) ;
  • 김영관 (인천대학교 신소재공학과)
  • Published : 2005.04.30

Abstract

During oxidation process, several type of defects are formed on the surface of the silicon crystal which was damaged mechanically before oxidation. As the size of abrasive particle increases multiple dislocation loops are produced favorably over oxidation-induced stacking faults, which are dominantly produced when ground with finer abrasive particle. These defects are not related with the crystal growth process like Czochralski or directional solidification. During directional solidification process, twins and stacking faults are the two major defects observed in the bulk of the silicon crystal. On the other hand, slip dislocations produced by the thermal stress are not observed. Thus, not only in single crystalline silicon crystal but also in multi-crystalline silicon, extrinsic gettering process with programmed production of surface defects might be highly applicable to silicon wafers for purification.

규소 표면의 기계적 손상은 산화 공정 중에 규소 표면에 여러 가지 형태의 결함들을 발생 시킨다. 규소 표면에 손상을 주는 마모 입자가 커짐에 따라 OISF보다는 etch pit의 형상이 동굴형인 선 결함(line defects)들이 많이 발생된다. 이들 결함들은 실리콘 결정을 성장시키는 단계에서 형성되는 결함들과는 상호 관련이 없다. 방향성 응고법으로 성장된 규소 결정속에 존재하는 결함들은 주로 twin과 stacking fault들이며 응고과정에서 발생이 예상되는 응력에 의한 전위는 거의 발견되지 않았다. 따라서 Czochralski 법으로 성장된 단 결정 규소뿐 아니라 방향성 응고법으로 성장된 다 결정 규소 기판도 표면의 결함들을 이용하여 extrinsic gettering을 통한 규소 결정 내부의 불순물 제거의 가능성이 높다.

Keywords

References

  1. H.J. Queisser and P.G.G. van Loon, 'Growth of lattice defects in silicon during oxidation', J. Appl. Phys. 35 (1964) 3066 https://doi.org/10.1063/1.1713179
  2. I. Perichaud, 'Gettering of impurities in solar silicon', Solar Energy Materials & Solar Cells. 72 (2002) 345
  3. C.-Y. Choi, J.-H. Lee and S.-H. Cho, 'Characterization of mechanical damage on structural and electrical properties of silicon wafers', Solid-State Electronics. 43 (1999) 2011
  4. M.W. Jenkins, 'A new preferential etch for defects in silicon crystals', J. Electrochem. Soc. 124 (1977) 757 https://doi.org/10.1149/1.2133401
  5. H.S. Oh, J.R. Kim, T.H. Kim, J.J. Yu, H.L. Lee, J.H. Lee and D. Rice, 'In Defects in Silicon', T. Abe. 99-1 (The Electrochemical Society Proceedings Series, New Jersey, 1999) 100
  6. M. Imai and K. Sumino, Philos. Mag. 47 (1983) 599
  7. J.W. Mayer and S.S. Lau 'Electronic materials science: for integrated circuits in Si and GaAs', (Macmillan Publishing Company, New York, 1990) 174
  8. K.V. Ravi and C.J. Varker, 'Oxidation-induced stacking faults in silicon. I. Nucleation phenomenon', J. Appl. Phys. 45 (1974) 263
  9. M.L. Joshi, 'Stacking faults in steam-oxidized silicon', Acta Metall. 14 (1966) 1157
  10. S.M. Hu, 'Anomalous temperature effect of oxidation stacking faults in silicon', Appl. Phys. Lett. 27 (1975) 165 https://doi.org/10.1063/1.88441
  11. F. Secco d' Aragona, 'Dislocation etch for (100) planes in silicon', J. Electrochem. Soc. 119 (1972) 948 https://doi.org/10.1149/1.2404374
  12. D. Hull and D.J. Bacon, 'Introduction to dislocation', 3rd Edition, 37 (Pergamon Press, New York, 1984) 172