The semiconductor carbon nanotube growth with atmosphere pressure chemical vapor deposition method and oxidation effect at $300^{\circ}C$ in air

상압화학기상 증착법에 의한 반도체탄소나노튜브의 성장과 $300^{\circ}C$ 대기에서의 산화열처리 효과

  • Kim, Jwa-Yeon (Department of Advanced Materials Engineering, Hoseo University)
  • 김좌연 (호서대학교 신소재공학)
  • Published : 2005.04.30

Abstract

Semiconductor carbon nanotube was grown on oxided silicon wafer with atmosphere pressure chemical vapor deposition (APCVD) method and investigated the electrical property after thermal oxidation at $300^{\circ}C$ in air. The electrical property was measured at room temperature in air after thermal oxidation at $300^{\circ}C$ for various times in air. Semiconductor carbon nanotube was steadily changed to metallic carbon nanotube as increasing of thermal oxidation times at $300^{\circ}C$ in air. Some removed area of carbon nanotube surface was shown with transmission electron microscopy (TEM) after thermal oxidation for 6 hours at $300^{\circ}C$ in air.

[ $SiO_2$ ]로 산화된 웨이퍼 위에 상압화학기상증착 기술로 반도체 탄소나노튜브를 성장했으며, 이 나노튜브의 전기적 특성을 조사하였다. 전기적 특성은 반도체 탄소나노튜뷰를 $300^{\circ}C$, 대기 중에서 산화 열처리 시간을 변화시키면서 상온대기에서 측정하였다. 반도체 탄소나노튜브는 $300^{\circ}C$에서 산화 열처리 시간을 증가할수록 점차적으로 금속 탄소나노튜브로 변형되는 것을 보았다. 탄소나노튜브는 $300^{\circ}C$, 대기에서 6시간 동안 산화 열처리 후 표면의 일부가 없어지는 현상을 투과 전자현미경으로 확인하였다.

Keywords

References

  1. S. Iijima, 'Needles in a carbon haystack', Nature 354 (1991) 18 https://doi.org/10.1038/354018a0
  2. T.W. Odom, J.L. Huang, P. Kim and C.M. Lieber, 'Structure and electrical properties of carbon nanotubes', J. Phys. Chem. B 104 (2001) 2794 https://doi.org/10.1021/jp993592k
  3. A.B. Dalton, S. Collins, E. Munoz, J.M. Raza, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim and R.H. Baughman, 'Super-tough carbon-nanotube fibres', Nature 423 (2003) 703
  4. Y. Meunier, J. Kephart, C. Roland and J. Berhole, 'Ab initio investigation of lithium diffusion carbon nanotube systems', Phys. Rev. Lett. 88 (2002) 7
  5. W.A. de Heer, 'Electron source and applications of same', international patent WO964101 (December 27, 1996)
  6. S.J. Tans, R.M. Verschueren and C. Dekker, 'Room-temperature transistor based on a single nanotube', Nature 393 (1998) 49
  7. M.M.J. Treacy, 'Exceptionally high Young's modules observed for individual carbon nanotubes', Nature 381 (1996) 678 https://doi.org/10.1038/381678a0
  8. M.S. Dresselhaus, G. Dressehaus and P.C. Eklund, 'Science of fullerenes and carbon nanotubes' (Academic, New York, 1996) Chap. 19
  9. S.J. Tans, M.H. Devoert, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs and C. Dekker, 'Individual single-wall carbon nanotubes as quantum wires', Nature 386 (1997) 474
  10. E.T. Mickelson, C.B. Huffman, A.G. Rinzler, R.E. Smallery, R.H. Hauge and J.L. Margrave, 'Formation of single-wall carbon nanotubes', Chem. Phys. Lett. 296 (1998) 188
  11. T. Okazaki, K. Suenaga, K. Hirahara, Shunji Bandow, S. Iijima and H. Shinohara, 'Electronic and geometric structures of metallofullerene peapods', Physics B 323 (2002) 97 https://doi.org/10.1016/S0921-4526(02)00991-2
  12. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune and M.J. Heben, 'Storage of hydrogen in single walled carbon nanotubes', Nature (London) 386 (1997) 377 https://doi.org/10.1038/386377a0
  13. G. Stan, M.J. Bojan, S. Curtarolo, S.M. Gatica and M.W. Cole, 'Uptake of gases in bundles of carbon nanotubes', Phys. Rev., B 62 (2000) 2173 https://doi.org/10.1103/PhysRevB.62.2173
  14. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho and H. Dai, 'Nanotube molecular wires as chemical sensors', Science 287 (2000) 622 https://doi.org/10.1126/science.287.5453.622
  15. J. Zhao, A. Buldum, J. Han and J.P. Lu, 'Gas molecule adsorption in carbon nanotubes and nanotube bundles', Nanotechnology 13 (2000) 195 https://doi.org/10.1088/0957-4484/13/2/312