Influence of thermal treatment on the dissolution of hydroxyapatite powders in simulated body fluid

수산화아파타이트 분말의 열처리가 유사생체용액 내 용해거동에 미치는 영향

  • Song, Dae-Sung (Department of Advanced Materials Engineering, Chosun University) ;
  • Seo, Dong-Seok (School of Materials Science Engineering, Seoul National University) ;
  • Lee, Jong-Kook (Department of Advanced Materials Engineering, Chosun University)
  • 송대성 (조선대학교 신소재공학과) ;
  • 서동석 (서울대학교 재료공학부) ;
  • 이종국 (조선대학교 신소재공학과)
  • Published : 2005.04.30

Abstract

Commercial hydroxyapatite (HA) powders were calcined at the temperature range of $1000{\sim}1350^{\circ}C$ in air, for 2h, and the calcined powders were immersed in simulated body fluid (SBF) of pH 7.4 at $37^{\circ}C$ for 3 or 7 days. Thermal decomposition and their related dissolution behaviors of hydroxyapatite were investigated by XRD, FT-IR, and TEM. At the temperature of $1200^{\circ}C$, HA gradually releases its $OH^-$ ions and transforms to OHAP((oxyhydroxyapatite, ($Ca_{10}(PO_4)_6O_x(OH)_{2-2x}$)). HA thermally decomposes to ${\alpha}-TCP$ (${\alpha}-tricalcium$ phosphate) and TTCP (tetracalcium phosphate) phase at $1350^{\circ}C$. It was found that the surface dissolution of the hydroxyapatite powders was accelerated by non-stoichiometric composition and decomposed to ${\alpha}-TCP$ and TTCP.

수산화아파타이트 상용분말을 $1000{\sim}1350^{\circ}C$ 온도범위에서 2시간 동안 공기 중에서 하소한 다음, pH 7.4인 유사 생체용액에 넣고 $37^{\circ}C$에서 3일 또는 7일간 침적실험을 행하였다. 열분해에 따른 수산화아파타이트 분말의 용해 거동은 XRD, FTIR, TEM을 이용해 비교분석 하였다. $1200^{\circ}C$에서 하소된 수산화아파타이트 분말은 격자 내 $OH^-$ 이온들의 탈수로 인하여 OHAP(oxyhydroxyapatite, ($Ca_{10}(PO_4)_6O_x(OH)_{2-2x}$)로 전이하였다. $1350^{\circ}C$에서 수산화아파타이트 분말 일부가 ${\alpha}-TCP$(${\alpha}-tricalcium$ phosphate)와 TTCP (tetracalcium phosphate)로 열분해 되었다. 수산화아파타이트 분말의 열분해로 인해 생성된 ${\alpha}-TCP$, TTCP 및 비화학양론조성의 OHAP 조성들이 수산화아파타이트 분말의 표면용해를 진전시켰다.

Keywords

References

  1. L.L. Hench, 'Bioceramics', J. Am. Ceram. Soc. 81 (1998) 1705 https://doi.org/10.1111/j.1151-2916.1998.tb02540.x
  2. M. Jarcho, 'Calcium phosphate ceramic as hard tissue prosthetics', Clin. Orthop. Relat. Res. 157 (1981) 259
  3. W. Suchanek and M. Yoshimura, 'Processing and properties of hydroxyapatite based biomaterials for use as hard tissue replacement implants', J. Mater. Res. 13 (1998) 94 https://doi.org/10.1557/JMR.1998.0015
  4. W. Tao, A. Dorner-Reisel and E. Muller, 'Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder', J. Euro. Ceram. Soc. 23 (2004) 693
  5. S.R. Radin and P. Ducheyne, 'The effect of calcium phosphate ceramic composition and structure on in vitro behavior', J. Biomed. Mater. Res. 27 (1993) 25 https://doi.org/10.1002/jbm.820270105
  6. J.C. Trombe and G. Montel, 'Some features of the incorporation of oxygen in different oxidation states in the apatite lattice', J. Inorg. Nucl. Chem. 40 (1977) 15 https://doi.org/10.1016/0022-1902(78)80298-X
  7. C. Liao, F. Lin, K. Chen and J. Sun, 'Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere', Biomaterials 20 (1999) 1807 https://doi.org/10.1016/S0142-9612(99)00076-9
  8. P. Shuk, W.L. Suchanek, T. Hao, R.E. Riman, E. Gulliver, M. Senna, K.S. Ten Huisen and V.F. Janas, 'Mechanochemical-hydrothermal preparation of crystalline hydroxyapatite powders at room temperature', J. Mater. Res. 16(5) (2001) 1231
  9. S. Koutsopoulos 'Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods', J. Biomed. Mater. Res. 62 (2002) 600 https://doi.org/10.1002/jbm.10280
  10. C. Ribeiro, E.C.S. Rigo, P. Sepulveda, J.C. Bressiani and A.H.A. Bressiani, 'Formation of calcium phosphate layer on ceramics with different reactivities', Mater. Sci. & Eng. 24 (2004) 631 https://doi.org/10.1016/j.msec.2004.08.006
  11. P.E. Wang and T.K. Chaki, 'Sintering behavior and mechanical properties of hydroxyapatite and dicalcium phosphate', J. Mater. Sci. Mater. Med. 4 (1993) 150 https://doi.org/10.1007/BF00120384