INTUITIONISTIC FUZZY σ-SUBALGEBRAS OF BCK-ALGEBRAS WITH CONDITION (S)

TAE SIK KIM AND WON KYUN JEONG

ABSTRACT. In this paper, some properties of intuitionistic fuzzy σ-subalgebras of BCK-algebra with condition (S) are investigated.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [12]. Since then these ideas have been applied to other algebraic structures such as semigroups, groups and rings, etc. In 1991, Xi [11] applied the concept of fuzzy sets to BCK-algebras which are introduced by Y. Imai and K. Iséki in 1966 [6]. K. Iséki [5] introduced the notion of BCK-algebra with condition (S) and several researchers considered the fuzzification of it. Recently, Y. B. Jun et al. [7] introduced the notion of fuzzy σ-subalgebras in BCK-algebras with condition (S). In 1986, K. T. Atanassov [1] introduced the notion of intuitionistic fuzzy set which is a generalization of the notion of fuzzy set. S. M. Hong et al. [4], using the Atanassov’s idea, introduced the concept of intuitionistic fuzzy subalgebras in BCK-algebras and S. M. Hong and H. G. Kim [3] studied the Cartesian product of fuzzy σ-subalgebras in BCK-algebras with condition (S). In this paper, we introduce the notion of intuitionistic fuzzy σ-subalgebra in BCK-algebras with condition (S) and investigated some of their properties.

Received November 5, 2004.
2000 Mathematics Subject Classification: 06F35, 03G25.
Key words and phrases: BCK-algebra, intuitionistic fuzzy σ-subalgebra.
2. Preliminaries

Definition 2.1. An algebra \((X, *, 0)\) of type \((2,0)\) is called a BCK-algebra if for all \(x, y, z \in X\) the following conditions hold:

(a) \(((x * y) * (x * z)) * (z * y) = 0\)
(b) \((x * (x * y)) * y = 0\)
(c) \(x * x = 0\)
(d) \(0 * x = 0\)
(e) \(x * y = 0\) and \(y * x = 0\) imply \(x = y\).

For any BCK-algebra \(X\), the relation \(\leq\) defined by \(x \leq y\) if and only if \(x * y = 0\) is a partial order on \(X\).

Definition 2.2. A BCK-algebra \(X\) is said to be with condition \((S)\) if for all \(x, y \in X\), the set \(\{z \in X | z * x \leq y\}\) has a greatest element, written \(x \circ y\).

In any BCK-algebra \(X\) with condition \((S)\), the following holds: for all \(x, y \in X\)

1. \(x \leq x \circ y, y \leq x \circ y\),
2. \(x \circ 0 = 0 \circ x = x\),
3. \(x \circ y = y \circ x\).

Definition 2.3. [3] Let \(X\) be a BCK-algebra with condition \((S)\) and let \(S\) be a nonempty subset of \(X\). Then \(S\) is called a \(\circ\)-subalgebra of \(X\) if, for any \(x, y \in S\), \(x \circ y \in S\).

Definition 2.4. [3] A map \(f : X \rightarrow Y\) of BCK-algebras with condition \((S)\) is called a \(*\)-homomorphism (resp. \(\circ\)-homomorphism) if \(f(x * y) = f(x) * f(y)\) (resp. \(f(x \circ y) = f(x) \circ f(y)\)) for all \(x, y \in X\). If \(f\) is both a \(*\)-homomorphism and a \(\circ\)-homomorphism of \(X\), we say that \(f\) is a homomorphism.

We now review some fuzzy logic concepts. Let \(X\) be a set. By a fuzzy set \(\mu\) in \(X\) we mean a function \(\mu : X \rightarrow [0,1]\), and the complement of \(\mu\), denoted by \(\overline{\mu}\), is the fuzzy set in \(X\) given by \(\overline{\mu}(x) = 1 - \mu(x)\) for all \(x \in X\).

Definition 2.5. [11] Let \(X\) be a BCK-algebra. A fuzzy subset \(\mu\) of \(X\) is called a fuzzy \(*\)-subalgebra of \(X\) if for all \(x, y \in X\), \(\mu(x * y) \geq \min\{\mu(x), \mu(y)\}\).
DEFINITION 2.6. [7] Let X be a BCK-algebra with condition (S). A fuzzy subset μ of X is called a fuzzy \circ-subalgebra of X if for all $x, y \in X$, $\mu(x \circ y) \geq \min\{\mu(x), \mu(y)\}$.

THEOREM 2.7. [3] A fuzzy subset μ of a BCK-algebra X with condition (S) is a fuzzy \circ-subalgebra of X if and only if, for every $t \in [0, 1]$, μ_t is either \emptyset or a \circ-subalgebra of X.

DEFINITION 2.8. [11] Let μ be a fuzzy subset of a set S. For $t \in [0, 1]$, the set

$$\mu_t = \{x \in S | \mu_t(x) \geq t\}$$

is called a level subset of μ.

DEFINITION 2.9. [3] Let X be a BCK-algebra with condition (S) and let μ be a fuzzy \circ-subalgebra of X. Then \circ-subalgebra μ_t, $t \in [0, 1]$ are called level \circ-subalgebras of μ.

DEFINITION 2.10. [1] Let X be a nonempty fixed set. An intuitionistic fuzzy set (IFS for short) A is an object having the form

$$A = \{(x, \mu_A(x), \gamma_A(x)) | x \in X\}$$

where the function $\mu_A : X \to [0, 1]$ and $\gamma_A : X \to [0, 1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\gamma_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \leq \mu_A(x) + \gamma_A(x) \leq 1$ for all $x \in X$.

For the sake of simplicity, we shall use the symbol $A = (\mu_A, \gamma_A)$ for the IFS $A = \{(x, \mu_A(x), \gamma_A(x)) | x \in X\}$.

DEFINITION 2.11. [4] An IFS $A = (\mu_A, \gamma_A)$ in a BCK-algebra X is called an intuitionistic fuzzy subalgebra of X if for all $x, y \in X$,

\begin{itemize}
 \item[(11)] $\mu_A(x \circ y) \geq \min\{\mu_A(x), \mu_A(y)\}$,
 \item[(12)] $\gamma_A(x \circ y) \leq \max\{\gamma_A(x), \gamma_A(y)\}$.
\end{itemize}

PROPOSITION 2.12. [4] Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy subalgebra of BCK-algebra X. Then $\mu_A(0) \geq \mu_A(x)$ and $\gamma_A(0) \leq \gamma_A(x)$ for all $x \in X$.
3. Intuitionistic fuzzy \circ-subalgebras

In what follows, let X denote a BCK-algebra with condition (S) unless otherwise specified.

Definition 3.1. An IFS $A = (\mu_A, \gamma_A)$ of X is called an *intuitionistic fuzzy \circ-subalgebra* of X if for all $x, y \in X$,

1. $\mu_A(x \circ y) \geq \min\{\mu_A(x), \mu_A(y)\}$,
2. $\gamma_A(x \circ y) \leq \max\{\gamma_A(x), \gamma_A(y)\}$.

Example 3.2. Let $X = \{0, 1, 2, 3\}$ in which $*$ is defined by:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Then $(X; *, 0)$ is a BCK-algebra with condition (S) and we can find the following \circ-table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Let $s, t \in [0, 1]$ be such that $s + t \leq 1$. Define an IFS $A = (\mu_A, \gamma_A)$ in X as follows:

- $\mu_A(0) = 1, \mu_A(1) = \mu_A(2) = s, \mu_A(3) = 0$,
- $\gamma_A(0) = 0, \gamma_A(1) = \gamma_A(2) = t, \gamma_A(3) = 1$.

By routine calculation we know that $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy \circ-subalgebra of X.

Lemma 3.3. An IFS $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy \circ-subalgebra of X if and only if the fuzzy sets μ_A and γ_A are fuzzy \circ-subalgebras of X.
Proof. Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy α-subalgebra of X. Then μ_A is a fuzzy α-subalgebra of X. Now, for every $x, y \in X$, we have

\[
\overline{\gamma}_A(x \circ y) = 1 - \gamma_A(x \circ y) \\
\geq 1 - \max\{\gamma_A(x), \gamma_A(y)\} \\
= \min\{1 - \gamma_A(x), 1 - \gamma_A(y)\} \\
= \min\{\overline{\gamma}_A(x), \overline{\gamma}_A(y)\}
\]

Hence $\overline{\gamma}_A(x)$ is a fuzzy α-subalgebra of X.

Conversely, assume that both μ_A and $\overline{\gamma}_A$ are fuzzy α-subalgebras of X. For every $x, y \in X$, we have $\mu_A(x \circ y) \geq \min\{\mu_A(x), \mu_A(y)\}$ and

\[
1 - \gamma_A(x \circ y) = \overline{\gamma}_A(x \circ y) \\
\geq \min\{\overline{\gamma}_A(x), \overline{\gamma}_A(y)\} \\
= \min\{1 - \gamma_A(x), 1 - \gamma_A(y)\} \\
= 1 - \max\{\gamma_A(x), \gamma_A(y)\}.
\]

It follows that $\gamma_A(x \circ y) \leq \max\{\gamma_A(x), \gamma_A(y)\}$. Thus, $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy α-subalgebra of X. \square

Theorem 3.4. Let $A = (\mu_A, \gamma_A)$ be an IFS in X. Then it is an intuitionistic fuzzy α-subalgebra of X if and only if $\overline{\gamma}_A := (\mu_A, \overline{\gamma}_A)$ and $\check{\Diamond} A := (\overline{\gamma}_A, \gamma_A)$ are intuitionistic fuzzy α-subalgebras of X.

Proof. If $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy α-subalgebra of X, then $\mu_A = \overline{\mu}_A$ and γ_A are fuzzy α-subalgebras from Lemma 3.3.

Conversely, if $\overline{\gamma}_A = (\mu_A, \overline{\gamma}_A)$ and $\check{\Diamond} A = (\overline{\gamma}_A, \gamma_A)$ are intuitionistic fuzzy α-subalgebras of X, then the fuzzy sets μ_A and $\overline{\gamma}_A$ are fuzzy α-subalgebras of X. Thus, $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy α-subalgebra of X. \square

Definition 3.5. Let $A = (\mu_A, \gamma_A)$ be an IFS in X and let $t \in [0, 1]$. Then the set $U(\mu_A; t) = \{x \in X \mid \mu_A(x) \geq t\}$ (resp. $L(\gamma_A; t) = \{x \in X \mid \gamma_A(x) \leq t\}$) is called upper t-level cut (resp. lower t-level cut) of A.

Theorem 3.6. If an IFS $A = (\mu_A, \gamma_A)$ in X is an intuitionistic fuzzy α-subalgebra of X, the upper t-level cut and lower t-level cut of A are α-subalgebras of X for every $t \in [0, 1]$ such that $t \in \text{Im}(\mu_A) \cap \text{Im}(\gamma_A)$.
which are called an upper level subalgebra and a lower level subalgebra respectively.

Proof. If \(x, y \in U(\mu_A; t) \), then \(\mu_A(x) \geq t \) and \(\mu_A(y) \geq t \). Hence we have \(\mu_A(x \circ y) \geq \min\{\mu_A(x), \mu_A(y)\} \geq t \). It follows that \(x \circ y \in U(\mu_A; t) \). Thus, \(U(\mu_A; t) \) is a \(\alpha \)-subalgebra of \(X \). Now let \(x, y \in L(\gamma_A; t) \). Then \(\gamma_A(x \circ y) \leq \max\{\gamma_A(x), \gamma_A(y)\} \leq t \) and hence \(x \circ y \in L(\gamma_A; t) \). Thus, \(L(\gamma_A; t) \) is a \(\alpha \)-subalgebra of \(X \). \(\square \)

Theorem 3.7. Let \(A = (\mu_A, \gamma_A) \) be an IFS in \(X \) such that the nonempty sets \(U(\mu_A; t) \) and \(L(\gamma_A; t) \) are \(\alpha \)-subalgebras of \(X \) for every \(t \in [0, 1] \). Then \(A = (\mu_A, \gamma_A) \) is an intuitionistic fuzzy \(\alpha \)-subalgebra of \(X \).

Proof. We need to prove that \(A = (\mu_A, \gamma_A) \) satisfies the conditions (IF1) and (IF2). First, if the condition (IF1) does not hold, then there exist \(x_0, y_0 \in X \) such that \(\mu_A(x_0 \circ y_0) < \min\{\mu_A(x_0), \mu_A(y_0)\} \). Let

\[
t_0 = \frac{1}{2}[\mu_A(x_0 \circ y_0) + \min\{\mu_A(x_0), \mu_A(y_0)\}].
\]

Then \(\mu_A(x_0 \circ y_0) < t_0 < \min\{\mu_A(x_0), \mu_A(y_0)\} \) and hence, \(x_0 \circ y_0 \notin U(\mu_A; t_0) \), but \(x_0, y_0 \in U(\mu_A; t_0) \). This is a contradiction.

Second, if the condition (IF2) does not hold, then

\[
\gamma_A(x_0 \circ y_0) > \max\{\gamma_A(x_0), \gamma_A(y_0)\},
\]

for some \(x_0, y_0 \in X \). Let

\[
s_0 = \frac{1}{2}[\gamma_A(x_0 \circ y_0) + \max\{\gamma_A(x_0), \gamma_A(y_0)\}].
\]

Then \(\max\{\gamma_A(x_0), \gamma_A(y_0)\} < s_0 < \gamma_A(x_0 \circ y_0) \). It follows that \(x_0, y_0 \in L(\gamma_A; s_0) \) and \(x_0 \circ y_0 \notin L(\gamma_A; s_0) \), which is a contradiction. This completes the proof. \(\square \)

Theorem 3.8. Any \(\alpha \)-subalgebra of \(X \) can be realized as both an upper level subalgebra and a lower level subalgebra of some intuitionistic fuzzy \(\alpha \)-subalgebra of \(X \).

Proof. Let \(S \) be a \(\alpha \)-subalgebra of \(X \) and let \(\mu_A \) and \(\gamma_A \) be fuzzy sets of \(X \) defined by

\[
\mu_A(x) = \begin{cases}
\alpha, & \text{if } x \in S, \\
0, & \text{otherwise},
\end{cases}
\]

and

\[
\gamma_A(x) = \begin{cases}
\alpha, & \text{if } x \in S, \\
0, & \text{otherwise},
\end{cases}
\]
and

$$\gamma_A(x) = \begin{cases} \beta, & \text{if } x \in S, \\ 1, & \text{otherwise,} \end{cases}$$

for all $x \in X$, where α and β are fixed numbers in $(0, 1)$ such that $\alpha + \beta < 1$. Let $x, y \in X$. If $x, y \in S$, then $x \circ y \in S$. Thus $\mu_A(x \circ y) = \min\{\mu_A(x), \mu_A(y)\}$ and $\gamma_A(x \circ y) = \max\{\gamma_A(x), \gamma_A(y)\}$. If at least one of x and y does not belong to S, then at least one of $\mu_A(x)$ and $\mu_A(y)$ is equal to 0, and at least one of $\gamma_A(x)$ and $\gamma_A(y)$ is equal to 1. It follows that $\mu_A(x \circ y) \geq 0 = \min\{\mu_A(x), \mu_A(y)\}$ and $\gamma_A(x \circ y) \leq 1 = \max\{\gamma_A(x), \gamma_A(y)\}$. Thus $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy o-subalgebra of X. Clearly, we have $U(\mu_A; o) = S = L(\gamma_A; o)$. This completes the proof.

Let f be a function from a set X to a set Y. If $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ are IFSs in X and Y respectively, then the preimage of B under f, denoted by $f^{-1}(B)$, is an IFS in X defined by

$$f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B)),$$

and the image of A under f, denoted by $f(A)$, is an IFS of Y defined by

$$f(A) = (f_s(\mu_A), f_i(\gamma_A)),$$

where

$$f_s(\mu_A)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \mu_A(x), & \text{if } f^{-1}(y) \neq \emptyset, \\ 0, & \text{otherwise,} \end{cases}$$

and

$$f_i(\gamma_A)(y) = \begin{cases} \inf_{x \in f^{-1}(y)} \gamma_A(x), & \text{if } f^{-1}(y) \neq \emptyset, \\ 0, & \text{otherwise,} \end{cases}$$

for each $y \in Y$ ([2]).

Theorem 3.9. Let $f : X \to Y$ be a o-homomorphism of BCK-algebras with condition (S). If $B = (\mu_B, \gamma_B)$ is an intuitionistic fuzzy o-subalgebra of Y, then the preimage $f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B))$ of B under f is an intuitionistic fuzzy o-subalgebra of X.
Proof. Suppose that $B = (\mu_B, \gamma_B)$ is an intuitionistic fuzzy \circ-subalgebra of Y. Let $x_1, x_2 \in X$. Then

$$f^{-1}(\mu_B)(x_1 \circ x_2) = \mu_B(f(x_1 \circ x_2)) = \mu_B(f(x_1) \circ f(x_2)) \geq \min\{\mu_B(f(x_1)), \mu_B(f(x_2))\} \geq \min\{f^{-1}(\mu_B)(x_1), f^{-1}(\mu_B)(x_2)\}$$

and

$$f^{-1}(\gamma_B)(x_1 \circ x_2) = \gamma_B(f(x_1 \circ x_2)) = \gamma_B(f(x_1) \circ f(x_2)) \leq \max\{\gamma_B(f(x_1)), \gamma_B(f(x_2))\} \leq \max\{f^{-1}(\gamma_B)(x_1), f^{-1}(\gamma_B)(x_2)\}.$$

Thus, $f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B))$ is an intuitionistic fuzzy \circ-subalgebra of X.

Theorem 3.10. Let $f : X \to Y$ be an onto \circ-homomorphism of BCK-algebras with condition (S). If $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy \circ-subalgebra of X, then the image $f(A) = (f_\circ(\mu_A), f_\circ(\gamma_A))$ of A under f is an intuitionistic fuzzy \circ-subalgebra of Y.

Proof. Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy \circ-subalgebra of X and let $y_1, y_2 \in Y$. Observing that $\{x_1 \circ x_2 \mid x_1 \in f^{-1}(y_1) \text{ and } x_2 \in f^{-1}(y_2)\} \subseteq \{x \in X \mid x \in f^{-1}(y_1 \circ y_2)\}$. We have

$$f_\circ(\mu_A)(y_1 \circ y_2) = \sup\{\mu_A(x) \mid x \in f^{-1}(y_1 \circ y_2)\} \geq \sup\{\mu_A(x_1 \circ x_2) \mid x_1 \in f^{-1}(y_1) \text{ and } x_2 \in f^{-1}(y_2)\} \geq \sup\{\min\{\mu_A(x_1), \mu_A(x_2)\} \mid x_1 \in f^{-1}(y_1) \text{ and } x_2 \in f^{-1}(y_2)\} \geq \min\{\sup\{\mu_A(x_1) \mid x_1 \in f^{-1}(y_1)\}, \sup\{\mu_A(x_2) \mid x_2 \in f^{-1}(y_2)\}\} = \min\{f_\circ(\mu_A)(y_1), f_\circ(\mu_A)(y_2)\}.$$
FUZZY α-SUBALGEBRAS OF BCK-ALGEBRAS

and

\[
\begin{align*}
f_i(\gamma_A)(y_1 \circ y_2) &= \inf\{\gamma_A(x) \mid x \in f^{-1}(y_1 \circ y_2)\} \\
&\leq \inf\{\gamma_A(x_1 \circ x_2) \mid x_1 \in f^{-1}(y_1) \text{ and } x_2 \in f^{-1}(y_2)\} \\
&\leq \inf\{\max\{\gamma_A(x_1), \gamma_A(x_2)\} \mid x_1 \in f^{-1}(y_1) \text{ and } x_2 \in f^{-1}(y_2)\} \\
&= \max\{\inf\{\mu_A(x_1) \mid x_1 \in f^{-1}(y_1)\}, \inf\{\mu_A(x_2) \mid x_2 \in f^{-1}(y_2)\}\} \\
&= \max\{f_i(\gamma_A)(y_1), f_i(\gamma_A)(y_2)\}.
\end{align*}
\]

Thus, \(f(A) = (f_i(\mu_A), f_i(\gamma_A)) \) is an intuitionistic fuzzy \(\alpha \)-subalgebra of \(Y \). \(\square \)

Let \(f : X \rightarrow Y \) be a \(\alpha \)-homomorphism of BCK-algebras with condition \((S)\). For any IFS \(A = (\mu_A, \gamma_A) \) in \(Y \), we define an IFS \(A' = (\mu_A', \gamma_A') \) in \(X \) by

\[
\mu_A'(x) := \mu_A(f(x)), \quad \gamma_A'(x) := \gamma_A(f(x)),
\]

for all \(x \in X \).

Theorem 3.11. Let \(f : X \rightarrow Y \) be a \(\alpha \)-homomorphism of BCK-algebras with condition \((S)\). If an IFS \(A = (\mu_A, \gamma_A) \) in \(Y \) is an intuitionistic fuzzy \(\alpha \)-subalgebra of \(Y \), then the IFS \(A' = (\mu_A', \gamma_A') \) in \(X \) is an intuitionistic fuzzy \(\alpha \)-subalgebra of \(X \).

Proof. Let \(x, y \in X \). Then

\[
\begin{align*}
\mu_A'(x \circ y) &= \mu_A(f(x \circ y)) \\
&= \mu_A(f(x) \circ f(y)) \\
&\geq \min\{\mu_A(f(x)), \mu_A(f(y))\} \\
&= \min\{\mu_A'(x), \mu_A'(y)\}
\end{align*}
\]

and

\[
\begin{align*}
\gamma_A'(x \circ y) &= \gamma_A(f(x \circ y)) \\
&= \gamma_A(f(x) \circ f(y)) \\
&\leq \max\{\gamma_A(f(x)), \gamma_A(f(y))\} \\
&= \max\{\gamma_A'(x), \gamma_A'(y)\}.
\end{align*}
\]
Hence, \(A^f = (\mu_A^f, \gamma_A^f) \) is an intuitionistic fuzzy \(riangleright \)-subalgebra of \(X \). This completes the proof. \(\square \)

Theorem 3.12. Let \(f : X \rightarrow Y \) be an epimorphism of \(\text{BCK}\)-algebras with condition \((S)\) and let \(A = (\mu_A, \gamma_A) \) be an IFS in \(Y \). If \(A^f = (\mu_A^f, \gamma_A^f) \) is an intuitionistic fuzzy \(riangleright \)-subalgebra of \(X \), then \(A = (\mu_A, \gamma_A) \) is an intuitionistic fuzzy \(riangleright \)-subalgebra of \(Y \).

Proof. Let \(y_1, y_2 \in Y \). Then there exist \(x_1, x_2 \in X \) such that \(f(x_i) = y_i \), for \(i = 1, 2 \). Then

\[
\mu_A(y_1 \circ y_2) = \mu_A(f(x_1) \circ f(x_2)) = \mu_A(f(x_1 \circ x_2)) = \mu_A^f(x_1 \circ x_2) \geq \min\{\mu_A^f(x_1), \mu_A^f(x_2)\} = \min\{\mu_A(f(x_1)), \mu_A(f(x_2))\} = \min\{\mu_A(y_1), \mu_A(y_2)\}
\]

and

\[
\gamma_A(y_1 \circ y_2) = \gamma_A(f(x_1) \circ f(x_2)) = \gamma_A(f(x_1 \circ x_2)) = \mu_A^f(x_1 \circ x_2) \leq \max\{\gamma_A^f(x_1), \gamma_A^f(x_2)\} = \max\{\gamma_A(f(x_1)), \gamma_A(f(x_2))\} = \max\{\gamma_A(y_1), \gamma_A(y_2)\}.
\]

Thus, \(A = (\mu_A, \gamma_A) \) is an intuitionistic fuzzy \(riangleright \)-subalgebra of \(Y \). This completes the proof. \(\square \)

References

FUZZY O-SUBALGEBRAS OF BCK-ALGEBRAS

School of Computer & Multimedia Engineering
Gyeongju University
Gyeongju, 780-712, Korea
E-mail: tskim@gju.ac.kr

Department of Mathematics
College of Natural Science
Kyungpook National University
Daegu 702-701, Korea
E-mail: wkjeong@knu.ac.kr