ON LIE IDEALS OF PRIME RINGS WITH GENERALIZED JORDAN DERIVATION

ÖZNUR GÖLBAŞI AND NEŞET AYDIN

ABSTRACT. The purpose of this paper is to show that every generalized Jordan derivation of prime ring with characteristic not two is a generalized derivation on a nonzero Lie ideal U of R such that $u^2 \in U$ for all $u \in U$ which is a generalization of the well-known result of I. N. Herstein.

1. Introduction

Let R be a prime ring with characteristic different from two. An additive mapping $d : R \rightarrow R$ is called Jordan derivation if $d(x^2) = d(x)x + xd(x)$ for all $x \in R$. For any $x, y \in R$, the symbol $[x, y]$ stands for the commutator $xy - yx$. An additive subgroup U of R is said to be a Lie ideal of R if $[u, r] \in U$, for all $u \in U, r \in R$. The notion of generalized derivation of prime ring R was introduced by B. Hvala in [1]. An additive map f of an associative ring R is called a generalized derivation if there is a derivation d of R such that

$$f(xy) = f(x)y + xd(y), \text{ for all } x, y \in R.$$

A classical result of I. N. Herstein states that every Jordan derivation of prime ring with characteristic not two is a derivation in [2]. A brief proof of this theorem can be found in [4]. Latter on, this result was generalized on Lie ideals of R such that $u^2 \in U$ for all $u \in U$ in [7] and generalized derivations of prime ring R in [6]. We shown that
this result holds for generalized derivation on a Lie ideal of R such that $u^2 \in U$ for all $u \in U$.

Throughout this paper, let R be a prime ring with its characteristic not two, U a nonzero Lie ideal of R with $u^2 \in U$ for all $u \in U$ and let $f : R \to R$ be a generalized Jordan derivation of R associated with a derivation d of R such that $f(x^2) = f(x)x + xd(x)$, for all $x \in R$.

In view of the hypothesis the $u^2 \in U$ for all $u \in U$, we get $(u + v)^2 \in U$ and so $(u + v)^2 - u^2 - v^2 = uv + vu \in U$ for all $u, v \in U$. Also $vu - uv \in U$, for all $u, v \in U$. Hence we find that $2vu \in U$, for all $u, v \in U$.

Lemma 1. For all $u, v, w \in U$,

1. $f(uv + vu) = f(u)v + ud(v) + f(v)u + vd(u)$
2. $f(uvu) = f(u)vu + ud(v)u + uvd(u)$
3. $f(uvw + wvu) = f(u)vw + ud(v)w + uvd(w) + f(w)vu + vd(v)u + uvd(u)$.

Proof. i) Linearizing, we get

$$f((u + v)^2) = f((u + v)(u + v)) = f(u^2 + uv + vu + v^2) = f(u^2) + f(uv + vu) + f(v^2)$$

$$= f(u)u + ud(u) + f(uv + vu) + f(v)v + vd(v)$$

for all $u, v \in U$.

On the other hand,

$$f((u + v)^2) = f((u + v)u + v) + (u + v)d(u + v)$$

$$= f(u)u + f(v)u + f(u)v + f(v)v + ud(u) + ud(v) + vd(u) + vd(v)$$

for all $u, v \in U$.

Comparing (1.1) and (1.2), we have

$$f(uv + vu) = f(u)v + ud(v) + f(v)u + vd(u)$$

for all $u, v \in U$.

ii) Replacing v by $uv + vu$ in (i), we get
\begin{equation}
\begin{aligned}
f(u(uv + vu) + (uv + vu)u) &= f(u^2v + uvu + uvu + vu^2) \\
&= f(u^2v + vu^2) + 2f(uvu) = f(u^2)v + u^2d(v) + f(v)u^2 \\
&\quad + vd(u^2) + 2f(uvu) = f(u)uv + ud(u)v + u^2d(v) \\
&\quad + f(v)u^2 + vd(u)u + vud(u) + 2f(uvu) \text{ for all } u, v \in U.
\end{aligned}
\tag{1.3}
\end{equation}

On the other hand, we have
\begin{equation}
\begin{aligned}
f(u(uv + vu) + (uv + vu)u) &= f(u)(uv + vu) + ud(uv + vu) \\
&\quad + f(uv + vu)u + (uv + vu)d(u) = f(u)uv + f(u)vu + ud(uu) \\
&\quad + ud(vu) + f(u)vu + ud(v)u + f(v)u^2 + vd(u)u \\
&\quad + uvd(u) + vud(u) = f(u)uv + f(u)vu + ud(u)v + u^2d(v) \\
&\quad + ud(v)u + uvd(u) + f(u)vu + ud(v)u + f(v)u^2 + vd(u)u \\
&\quad + uvd(u) + vud(u) \text{ for all } u, v \in U.
\end{aligned}
\tag{1.4}
\end{equation}

Comparing (1.3) and (1.4), using \(\text{char}R \neq 2\), we get the required result.

iii) Linearizing (ii) on \(u\), we get
\begin{equation}
\begin{aligned}
f((u + w)v(u + w)) &= f(uwu + uwu + wvu + wvu) \\
&= f(uwu) + f(uvw + wvu) + f(wvw) = f(u)vu + ud(v)u + uvd(u) \\
&\quad + f(uvw + wvu) + f(w)vw + wd(v)v + wvd(u) \text{ for all } u, v, w \in U.
\end{aligned}
\tag{1.5}
\end{equation}

Now compute \(f((u + w)v(u + w))\) in other way, we get
\begin{equation}
\begin{aligned}
f((u + w)v(u + w)) &= f(u + w)(vu + vw) + (u + w)d(v)(u + w) \\
&\quad + (uv + vw)d(u + w) = f(u)vu + f(u)vw + f(w)vu + f(w)vw \\
&\quad + ud(v)u + ud(v)w + wd(v)v + wvd(u) \\
&\quad + wvd(u) + wvd(w) + wvd(u) + wvd(w) \text{ for all } u, v, w \in U.
\end{aligned}
\tag{1.6}
\end{equation}

Comparing (1.5) and (1.6), we have
\[f(uvw + wvu) = f(u)vu + ud(v)w + wvd(w) + f(w)vu \\
\quad + wd(v)u + wvd(u) \text{ for all } u, v, w \in U. \]

\[\square\]

\textbf{Remark 1.} We introduce abbreviation
\[u^v = f(uv) - f(u)v - ud(v) \text{ for all } u, v \in U. \]

Observe also by Lemma 1 (i), we have
\[f(uv + vu) = f(u)v + ud(v) + f(v)u + vd(u) \]
and so,
\[f(uv) - f(u)v - ud(v) = -(f(vu) - f(v)u - vd(u)). \]

That is,
\[
(1.7) \quad u^v = -v^u \text{ for all } u, v \in U.
\]

Lemma 2. For all \(u, v \in U \), \(u^v[u,v] = 0 \).

Proof. Replace \(w \) by \(uv \) in Lemma 1 (iii) and using the fact that \(\text{char} R \neq 2 \), we get
\[
(1.8) \quad f((uv)^2 + uv^2 u) = f(uv)uv + uv^2 d(u) + f(u)v^2 u + ud(v)u + u^2 d(u) \text{ for all } u, v \in U.
\]

On the other hand, we get
\[
(1.9) \quad f(uv(uv) + (uv)vu) = f(u)vuv + ud(v)uv + uv^2 d(u) + f(vu)uv + ud(v)uv + u^2 d(u) \text{ for all } u, v \in U.
\]

Comparing this two equations, we have
\[
\begin{align*}
 f(uv)uv + f(v)u^2 u + ud(v)vu &= f(u)vuv + ud(v)uv + f(u)uvu.
\end{align*}
\]

That is,
\[
(u^v)[u,v] = 0 \text{ for all } u, v \in U. \]

Theorem 1. Let \(R \) be a non-commutative prime ring with characteristic not two, \(U \) a noncentral Lie ideal of \(R \) such that \(u^2 \in U \) for all \(u \in U \). If \(f \) be a generalized Jordan derivation on \(U \) then \(f \) is a generalized derivation on \(U \).
Proof. From Lemma 1 (iii), we have

\[f(uwv + vwu) = f(u)wv + ud(w)v + uw(u) \]
\[+ f(v)wu + vd(w)u + vwd(u) \]
for all \(u, v, w \in U \).

Replacing \(u \) by \(uv \) and \(v \) by \(vu \) in (1.10), we get

\[f((uv)w(vu) + (vu)w(uv)) = f(uvw)w + uwd(vu) + uvw(u) \]
\[+ f(v)uwv + vd(w)uv + vwd(vu) \]
\[= f(uvw)w + uwd(vu) + uvw(u) \]
\[+ f(v)uwv + vd(w)uv + vwd(vu) \]
\[= uvwd(v) + vuwd(v) \]
for all \(u, v, w \in U \).

Comparing equations (1.11) and (1.12), we obtain

\[\{ f(u) - f(v) - ud(u) \} uvw \]
\[+ \{ f(u) - f(v) - ud(v) \} wvu = 0 \]

and hence

\[u^6wuw + w^6wvu = 0 \]
for all \(u, v, w \in U \).

Using the \(u^6 = -u^6 \), we get

\[u^6U[v, u] = 0 \]
for all \(u, v \in U \).

Since \(U \not\subseteq Z \), by [3, Lemma 4] we obtain for each pair \(u, v \in U \)
either \(u^6 = 0 \) or \([u, v] = 0 \). Notice that the mappings \((u, v) \rightarrow u^6 \) and \((u, v) \rightarrow [u, v] \) satisfy the requirements of the [4, Lemma 4]. Hence \(u^6 = 0 \) for all \(u, v \in U \) or \([u, v]^2 = 0 \) for all \(u, v \in U \). If \([u, v]^2 = 0 \) for
all \(u, v \in U \) then for each \(u \in U \), \(I_u(v)^2 = 0 \), for all \(v \in U \), where \(I_u \)

is the inner derivation. Hence we get \(I_u(U) = 0 \) by [3, Theorem 1].

This yields that \(U \subset Z \), a contradiction. Thus, we have \(u^v = 0 \) for all \(u, v \in U \). This completes the proof. \(\square \)

REFERENCES

Department of Mathematics
Faculty of Arts and Science
Cumhuriyet University
Sivas - TURKEY
E-mail: ogolbasi@cumhuriyet.edu.tr
URL: http://www.cumhuriyet.edu.tr

Department of Mathematics
Faculty of Arts and Science
Çanakkale 18 Mart University
Çanakkale - TURKEY
E-mail: neseta@comu.edu.tr
URL: http://www.comu.edu.tr