Drawing and Writing as Methods to Assist Students in Connecting and Integrating External Representations in Learning the Particulate Nature of Matter with Multiple Representations

물질의 입자적 성질에 대한 다중 표상 학습에서 외적 표상들 간의 연계와 통합을 촉진시키는 방안으로서의 그리기와 쓰기

  • Published : 2005.08.30

Abstract

This study investigated the effects of drawing and writing as methods to assist students in connecting and integrating multiple external representations provided in learning the particulate nature of matter. Seventh graders (N=224) at a coed middle school were assigned to a control group, a drawing group, and a writing group. The students were taught about "Boyle's Law" and "Charles's Law" for two class periods. Students observed macroscopic phenomena through experiments. After this observation, students in the control group learned the topic with both external visual and verbal representations simultaneously. Students in the drawing group drew their mental model from the external verbal representation provided, and then compared their drawing with external visual representation. Students in the writing group wrote their mental model from the external visual representation provided, and then compared their writing to the external verbal representation. The two-way ANCOVA results revealed that the scores of a conception test for the writing group were significantly higher than those for the control group. While the drawing group performed better than the control group, the difference is relatively smaller. There were no significant interactions between the instruction and spatial visualization ability in the scores of the conception test. Most students perceived the writing or drawing activities helpful in understanding the concepts, and a few students responded that the writing or drawing activity was interesting. Educational implications were discussed.

이 연구에서는 물질의 입자적 성질이 강조되는 화학 개념 학습에서 학생들에게 제공되는 다양한 외적 표상들 간의 연계와 통합을 촉진시키는 방법으로서의 그리기와 쓰기의 효과에 대해 알아보았다. 남녀공학 중학교 1학년 224명을 통제 집단, 그리기 집단, 쓰기 집단으로 배치한 후,'보일의 법칙'과 '샤를의 법칙'에 대하여 2차시 동안 수업을 하였다. 세 집단 모두 거시적인 현상을 실험을 통해 관찰하게 한 후, 통제 집단 에서는 시각적 정보와 언어적 정보를 동시에 제공하여 학습하게 하였고, 그리기 집단에서는 제공된 언어적 정보에 대한 정신 모형을 그림으로 그리게 한 후, 이를 시각적 정보와 비교하게 하였으며, 쓰기 집단에서는 시각적 정보에 대한 정신 모형을 글로 쓰게 한 후, 이를 언어적 정보와 비교하게 하였다. 이원 공변량 분석 결과, 쓰기 집단의 개념 이해도 점수가 통제 집단보다 유의미하게 높았으며, 그리기 집단은 통제 집단보다 통계적으로 높은 경향성을 보였다. 개념 이해도 점수에서 수업 처치와 공간 시각화 능력 사이의 상호 작용 효과는 없었다. 학생들의 수업 인식 검사 결과에서는 대부분의 학생들이 쓰기와 그리기 활동을 통해 개념 이해가 잘 되었다고 응답하였으며, 일부 학생들은 쓰기와 그리기가 재미있었다고 응답하기도 하였다. 이에 대한 교육학적 함의를 논의하였다.

Keywords

References

  1. 노태희, 유지연, 한재영 (2003). 분자 수준에서의 그림 그리기를 활용한 수업 모형의 효과. 한국과학교육학회지, 23(6), 609-616
  2. Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2-3), 131-152 https://doi.org/10.1016/S0360-1315(99)00029-9
  3. Ainsworth, S. E., Bibby, P. A, & Wood, D. J. (1998). Analysing the costs and benefits of multi-representational learning environments. In M W. van Someren, P. Reimann, H. P. A. Boshuizen, & T. de Jong (Eds.), Learning with Multiple Representations (pp, 120-134). Oxford: Elsevier
  4. Ardac, D, & Akaygun, S. (2004). Effectiveness of multimedia-based instruction that emphasizes molecular representations on students' understanding of chemical change. Journal of Research in Science Teaching, 41(4), 317-337 https://doi.org/10.1002/tea.20005
  5. Carter, P. A, Holland, S. M, Mladic, S. L., Sarbiewski, G. M, & Sebastian, D. M. (1998). Improving student writing skills using wordless picture books. Action Research Project, Saint Xavier University and IRI/Skylight. (ERIC Document Reproduction Service No. ED 423525)
  6. Do Jong, T., Ainsworth, S., Dobson, M, van der Hulst, A, Levonen, J., Reimann, P., Sime, J.-A., van Someren, M. W., Spada, H, & Swaak, J. (1998). Acquiring knowledge in science and mathematics: The use of multiple representations in technology-based learning environments. In M W. van Someren, P. Reimann, H. P. A. Boshuizen, & T. de Jong (Eds), Learning with Multiple Representations (pp. 9-40). Oxford: Elsevier
  7. Edens, K. M, & Potter, E. F. (2003). Using descriptive drawings as a conceptual change strategy in elementary science. School Science and Mathematics, 103(3), 135-144 https://doi.org/10.1111/j.1949-8594.2003.tb18230.x
  8. Guay, R., McDaniel, E., & Angelo, S. (1978). Analytical factor confounding spatial ability measurement. Paper presented at the meeting of the American Psychological Association, Toronto, Ontario, Canada
  9. Hand, B., Wallace, C. W., & Yang, E.-M. (2004). Using a science writing heuristic to enhance learning outcomes from laboratory activities in seventh-grade science: Quantitative and qualitative aspects. International Journal of Science Education, 26(2), 131-149 https://doi.org/10.1080/0950069032000070252
  10. Kester, L., Kirschner, P. A., & van Merrienboer, J. J. G. (2004). Information presentation and troubleshooting in electrical circuits. International Journal of Science Education, 26(2), 239-256 https://doi.org/10.1080/69032000072809
  11. Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research on Science Teaching, 34(9), 949-968 https://doi.org/10.1002/(SICI)1098-2736(199711)34:9<949::AID-TEA7>3.0.CO;2-U
  12. Mayer, R. E. (2003). The promise of multimedia learning: Using the same instructional design methods across different media. Learning and Instruction, 13(2), 125-139 https://doi.org/10.1016/S0959-4752(02)00016-6
  13. Noh, T., & Scharmann, L. C. (1997). Instructional influence of a molecular-level pictorial presentation of matter on students' conceptions and problem-solving ability. Journal of Research in Science Teaching, 34(2), 199-217 https://doi.org/10.1002/(SICI)1098-2736(199702)34:2<199::AID-TEA6>3.0.CO;2-O
  14. Paivio, A. (1986). Mental representation: A dual coding approach. New York: Oxford University Press
  15. Ritchie, D., & Karge, B. D. (1996). Making information memorable: Enhanced knowledge retention and recall through the elaboration process. Preventing School Failure, 41(1), 28-33 https://doi.org/10.1080/1045988X.1996.9944681
  16. Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning and Instruction, 13(2), 227-237 https://doi.org/10.1016/S0959-4752(02)00022-1
  17. Sinatra, R. (1981). Using visuals to help the second language learner. Reading Teacher, 34(5), 539-546
  18. Van Meter, P. (2001). Drawing construction as a strategy for learning from text. Journal of Educational Psychology, 93(1), 129-140 https://doi.org/10.1037/0022-0663.93.1.129
  19. Van Someren, M. W., Reimann, P., Boshuizen, H. P. A, & de Jong, T. (1998). Learning with Multiple Representations. Oxford: Elsevier
  20. Williamson, V. M., & Abraham, M. R. (1995). The effects of computer animation on the particulate mental models of college chemistry students. Journal of Research in Science Teaching, 32(5), 521-534 https://doi.org/10.1002/tea.3660320508
  21. Wu, H.-K., Krajcik, J. S., & Soloway, E. (2001), Promoting understanding of chemical representations: Students' use of a visualization tool in the classroom, Journal of Research in Science Teaching, 38(7), 821-842 https://doi.org/10.1002/tea.1033
  22. Wu, H.-K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465-492 https://doi.org/10.1002/sce.10126