The Effects of Small Group Drawing in Learning the Particulate Nature of Matter

물질의 입자성에 대한 학습에서 소집단 그림 그리기의 효과

  • Published : 2005.12.30

Abstract

This study investigated the effects of small group drawing in learning the concepts of particulate nature of matter. Three classes of seventh graders (N = 126) at a coed middle school were randomly assigned to a pair drawing group, an individualistic drawing group, and a control group. The students were taught the 'three states of matter' and 'motion of molecules' for eight class periods. Prior to these classes, student self-efficacy, learning motivation, and attitude toward science instruction were examined. After instruction, tests assessing achievement, conception, learning motivation, and attitude toward science instruction were administered. Two-way ANCOVA results revealed that scores of achievement and conception for the pair drawing group were significantly higher than those for the control group. However, scores of the three groups did not significantly differ in learning motivation and attitude toward science instruction. Furthermore, no significant interactions surfaced between instruction and the level of self-efficacy in all dependent variables.

이 연구에서는 물질의 입자성에 대한 개념 학습에서 소집단 그림 그리기의 효과를 조사하였다. 경기도에 소재한 남녀공학 중학교 1학년 126명을 2인 1조의 소집단 그림 그리기 집단, 개별 그림 그리기 집단, 통제 집단으로 배치한 후,'물질의 세 가지 상태'와 '분자의 운동' 단원에 대하여 8차시 동안 수업을 실시하였다. 사전 검사로 자아효능감, 학습 동기, 과학 수업에 대한 즐거움 검사를 실시하였고, 사후 검사로 학업 성취도, 개념 이해도, 학습 동기, 과학 수업에 대한 즐거움 검사를 실시하였다. 이원 공변량 분석 결과, 소집단 그림 그리기 집단의 학업 성취도와 개념 이해도 검사 점수가 통제 집단보다 유의미하게 높았다. 그러나 학습 동기와 과학 수업에 대한 즐거움 검사 점수에서는 집단간에 유의미한 차이가 없었다. 모든 종속 변인에 대하여 수업 처치와 자아효능감 수준 사이의 상호작용 효과는 없었다.

Keywords

References

  1. 노태희, 유지연, 한재영 (2003). 분자 수준에서의 그림 그리기를 활용한 수업 모형의 효과. 한국과학교육학회지, 23(6), 609-616
  2. 한재영 (2003). 소집단 과학 학습에서 유화성에 따른 집단 구성의 교수 효과 및 언어적 상호작용. 서울대학교 박사학위 논문
  3. Ardac, D., & Akaygun, S. (2004). Effectiveness of multimedia-based instruction that emphasizes molecular representations on students' understanding of chemical change. Journal of Research in Science Teaching, 41(4), 317-337 https://doi.org/10.1002/tea.20005
  4. Dove, J. E., Everett, L. A., & Preece, P. F. W. (1999). Exploring a hydrological concept through children's drawings. International Journal of Science Education, 21(5), 485-497 https://doi.org/10.1080/095006999290534
  5. Edens, K. M, & Potter, E. F. (2003). Using descriptive drawings as a conceptual change strategy in elementary science. School Science and Mathematics, 103(3), 135-144
  6. Fraser, B. J. (1981). Test of science-related attitudes: Handbook. Hawthorn: The Australian Council for Educational Research
  7. Glynn, S. (1997). Drawing mental models. Science Teacher, 64(1), 30-32
  8. Gobert, J. D. (1994). Expertise in the comprehension of architectural plans: Contribution of representation and domain knowledge. Unpublished doctoral dissertation, University of Toronto, Toronto, Ontario
  9. Gobert, J. D., & Clement, J. J. (1999). Effects of student-generated diagrams versus student-generated summaries on conceptual understanding of causal and dynamic knowledge in plate tectonics. Journal of Research in Science Teaching, 36(1), 39-53 https://doi.org/10.1002/(SICI)1098-2736(199901)36:1<39::AID-TEA4>3.0.CO;2-I
  10. Jones, M G., Carter, G., & Rua, M J. (1999). Children's concepts: Tools for transforming science teachers' knowledge. Science Education, 83(5), 545-557 https://doi.org/10.1002/(SICI)1098-237X(199909)83:5<545::AID-SCE3>3.0.CO;2-U
  11. Keller, J. M. (1993). IMMS: Instructional material motivation survey. florida State University
  12. Keller, J. M., & Subhiyah, R. (1993). Course interest survey. florida State University
  13. Kindfield, C. H. (1991). Biology diagrams: Tools to think with. Paper presented at the annual meeting of the American Educational Research Association, Chicago. (ERIC Document Reproduction Service No. ED 349158)
  14. Lazarowitz, R, Hertz-Lazarowitz, R., & Baird, J. H. (1994). Learning science in a cooperative setting: Academic achievement and affective outcomes. Journal of Research in Science Teaching, 31(10), 1121-1131 https://doi.org/10.1002/tea.3660311006
  15. Lin, H-S., Cheng, H-J., & Lawrenz, F. (2000). The assessment of students and teachers' understanding of gas laws. Journal of Chemical Education, 77(2), 235-238
  16. Pajares, E, & Miller, M D. (1995). Role of self-efficacy and self-concept beliefs in mathematical problem solving: A path analysis. Journal of Educational Psychology, 86(2), 193-203
  17. Pintrich, P. R, & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82(1), 33-40 https://doi.org/10.1037/0022-0663.82.1.33
  18. Richmond, G., & Striley, J. (1996). Making meaning in classrooms: Social processes in small-group discourse and scientific knowledge building. Journal of Research in Science Teaching, 33(8), 839-858 https://doi.org/10.1002/(SICI)1098-2736(199610)33:8<839::AID-TEA2>3.0.CO;2-X
  19. Sheridan, S. R (1997). Drawing/writing and the new literacy: Where verbal meets visual. MA: Drawing Writing
  20. Singer, J. E., Wu, H-K, & Tal, R. (2003). Students' understanding of the particulate nature of matter. School Science and Mathematics, 103(1), 28-44
  21. Strike, K. A, & Posner. G. J. (1992). A revisionist theory of conceptual change. In R. A. Duschl & R. J. Hamilton (Eds.), Philosophy of science, cognitive psychology, and educational theory and practice (pp 147-176). Albany, NY: State University of New York Press
  22. Van Meter, P. (2001). Drawing construction as a strategy for learning from text. Journal of Educational Psychology, 93(1), 129-140 https://doi.org/10.1037/0022-0663.93.1.129
  23. Wu, H-K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465-492 https://doi.org/10.1002/sce.10126