The Effect of Papaverine on the Calcium-dependent K+ Current in Rat Basilar Smooth Muscle Cells

Guang-Yi Bai, M.D.,1 Jae-Woo Cho, M.D.,1 Dong-Han Han, M.D.,1 Tae-Ki Yang, M.D.,1 Yong-Geun Gwak, M.D.,2 Chul-Jin Kim, M.D.1

Departments of Neurosurgery,1 Pharmacology,2 Research Institute of Clinical Medicine and Institute of Cardiovascular Research, Chonbuk National University Medical School and Hospital, Jeonju, Korea

Objective: Papaverine has been used in treating vasospasm following subarachnoid hemorrhage (SAH). However, its action mechanism for cerebral vascular relaxation is not clear. Potassium channels are closely related to the contraction and relaxation of cerebral smooth muscle. Therefore, to identify the role of potassium and calcium channels in papaverine-induced vascular relaxation, we examine the effect of papaverine on potassium channels in freshly isolated smooth muscle cells from rat basilar artery.

Methods: The isolation of rat basilar smooth muscle cells was performed by special techniques. The whole cell currents were recorded by whole cell patch clamp technique in freshly isolated smooth muscle cells from rat basilar artery. Papaverine was added to the bath solution.

Results: Papaverine of 100μM into bath solution increased the amplitude of the outward K+ current which was completely blocked by BKCa (large conductance calcium dependent potassium channels) blocker, IBX (iberiotoxin), and calcium chelator, BAPTA1,2-bis(o-aminophenoxy)ethane-N,N',N''-tetraacetic acid, in whole cell mode.

Conclusion: These results strongly suggest that potassium channels may play roles in papaverine-induced vascular relaxation in rat basilar artery.

KEY WORDS: Papaverine · Vasospasm · Potassium channel · Patch-Clamp techniques.

Introduction

Papaverine normally relaxes smooth muscles and reduces the contractile response to excitatory agents. However, there is no consensus of opinion regarding the mechanism of papaverine-induced relaxation. There is evidence that papaverine inhibits phosphodiesterase activity in various visceral smooth muscles, which implies an increase in the intracellular cyclic AMP concentration which, in turn, is thought to be the intracellular mediator of the relaxation. However, a number of inconsistencies in the relationship between inhibition of phosphodiesterase and the relaxing effect of papaverine have been reported. Huddart & Saad showed that at least in ileal smooth muscle the relaxing effect of papaverine is associated with the blockade of Ca2+ influx. Also they obtained results that argue strongly against any causal relationship between cyclic AMP and relaxation in the ileum and vas deferens.

Vasospasm is the leading cause of disability and death after intracranial aneurysm rupture, but the pathogenesis of the arterial narrowing is not completely understood, and the best form of treatment is not yet clear. Intracranial angioplasty with nondetachable silicone balloons and intracranial intrararterial papaverine infusion have been used in a number of institutions; however, the reported experience remains modest.

This study was undertaken to clarify the role of potassium channel in papaverine-induced vascular relaxation, and to investigate the effect of papaverine (100μM) on outward potassium currents using patch clamp technique in cerebral smooth muscle cells from rat basilar artery and found that papaverine activated the BKCa channel.

* Received: April 26, 2006 · Accepted: July 18, 2005
* Address for reprints: Chul-Jin Kim, M.D., Department of Neurosurgery, Chonbuk National University Medical School and Hospital, 634-18, Geumnam-dong, Daejeon-gu, Jeonju 561-712, Korea Tel: +82-63-259-1879, Fax: +82-63-277-3273, E-mail: kcj@chonbuk.ac.kr
Materials and Methods

Cell isolation

The methods for isolation of rat basilar smooth muscle cells have been described\(^3\). Briefly, Spargue-Dawley female rats were anesthetized with Morofane and decapitated. The basilar arteries were removed to a medium consisting of (in mM): NaCl 130, KCl 15, CaCl\(_2\) 0.8, MgCl\(_2\) 1.3, glucose 5, N-[2-hydroxyethyl]piperazine-N’-[2-ethanesulfonic acid] (Hepes) 10, penicillin (100units/ml) and streptomycin (0.1g/ml). Arteries were then cleaned of connective tissue and small side branches. The arteries were cut into 2.0-mm rings and incubated for 1 hour at room temperature in a medium containing 0.2mM CaCl\(_2\) and collagenase (type II, 0.5g/l), clastase (0.5g/l), hyaluronidase (type IV-S, 0.5g/l) and deoxyribonuclease I (0.1g/l). The rings were washed in fresh solution containing CaCl\(_2\) (0.2mM), trypsin inhibitor (0.5g/l) and deoxyribonuclease I (0.1g/l) and then triturated gently. Cells were plated on glass coverslips and stored at 4°C (used in 12hours) in the above-mentioned buffer containing CaCl\(_2\) (0.8mM) and bovine serum albumin (2g/l) free of essential fatty acids. Isolated cells stained positive for \(\alpha\)-actin and retained the ability to contract in response to KCl, caffeine, serotonin and hemolysate.

Whole-cell patch clamp technique

Cells were voltage-clamped using the whole-cell patch clamp technique\(^3\). Electrodes were prepared from glass capillary tubing (KIMAX-51, Kimble products, USA) by using a patch electrode puller (PP-83, Narishige, Tokyo, Japan), and pipette resistance was 2-10M\(\Omega\). These were positioned using a three-dimensional vernier-type hydraulic micromanipulator (MX-630R, SOMA SCIENTIFIC). Seals (5-10G\(\Omega\)) were formed by applying gentle negative pressure. Voltage steps were applied with pulse protocols driven by an IBM 586 computer equipped with A-D and D-A converters (DigiData 1200, Axon Instruments Inc., Foster City, CA, USA). Data of membrane currents were collected and amplified using a patch clamp Axon-patch 1D and pCLAMP 5.7.1 programs (Axon Instruments). None of the record shown were leakage-corrected, and series compensation was not used. Data were filtered with a low-pass Bessel filter (-3dB at 1 kHz) and digitized on-line at a sampling frequency of 5-10 kHz for subsequent computer analysis. Data analysis was performed using pCLAMP 5/7/1. All experiments were carried out at room temperature (20–26°C).

Solutions and drugs

Calcium dependent K\(^+\) channels (BKCa)

The normal bath solution for the whole-cell recordings was (mM): NaCl 130, KCl 5, MgCl\(_2\) 1.2, CaCl\(_2\) 1.8, HEPES 10, glucose 5.2 and the pH was adjusted to 7.4 with NaOH. Pipettes were filled with (mM): KCl 140, MgCl\(_2\) 0.5, CaCl\(_2\) 0.1, ethylenebis(oxonitirilo) tetraacetic acid (EGTA) 0.09, HEPES 10, glucose 10 and the pH was adjusted to 7.4 with KOH.

The free calcium concentration in the pipette solution was estimated to be 10nM. The pipette solution was filtered before use (pore size 0.2\(\mu\)m).

Data analysis

Data are expressed as mean ± SE. Differences among multiple groups were calculated by Student’s t-test. A value of p <0.05 was considered statistically significant.

![Image](image_url)

Fig. 1. Effect of papaverine on whole cell outward K\(^+\) current from rat basilar artery smooth muscle cell. A: Application of papaverine (100\(\mu\)M) into the bath solution increased the amplitude of the outward K\(^+\) current remarkably. B: The current–voltage relationship.
Results

Effect of papaverine on K⁺ channels

Outward K⁺ currents from rat basilar artery smooth muscle cells were always elicited by potentials beyond \(-40\text{mV}\) by voltage pulses given every 3 s in \(20\text{mV}\) increments over the range of \(-100\text{ to } +80\text{mV}\) from the holding potential of \(-60\text{mV}\). No marked inward current could be seen in the same voltage ranges. Replacement of potassium in the pipette with cesium eliminated the outward current \((n=5)\). Application of caffeine \((3-6\text{mM}; n=4)\) and calcium ionophore A23187 \((10\mu\text{M}; n=2)\) into normal bath solution significantly \(p<0.05\) enhanced the outward current and the current was reversibly blocked by addition of TEA \((10-30\text{mM}; n=8; p<0.01)\) to the bath solution, but was not blocked by glibenclamide \((3-6\text{mM}; n=4; p>0.05)\), a selective ATP-sensitive potassium channel (K_{ATP}) blocking agent. Thus, the outward current had the properties of a calcium-activated potassium current, or KCa¹¹.

After establishment of whole-cell recordings and collecting control recordings for approximately 5 minutes until the current elicited by depolarization stabilized, papaverine was applied to the bath solution. In control studies, the whole-cell current remained stable over 10 to 20 minutes in the absence of interventions. Fig. 1 showed whole cell potassium current from rat basilar artery smooth muscle cells. Application of papaverine \((100\mu\text{M})\) into the bath solution increased the amplitude of the outward K⁺ current remarkably \((n=10, p<0.05)\). The current voltage relationship of the study was shown in Fig. 1B.

Application of large conductance calcium-activated potassium channel (BKca) blocker, ibotenic acid \((0.1\mu\text{M}, \text{IBX})\), into bath solution blocked the increased amplitude of the papaverine-induced outward current remarkably (Fig. 2, \(n=10,\ P<0.05\)). The current voltage relationship of the study was shown in Fig. 2D. Fig. 3 illustrated the effect

Fig. 2. IBX (iberiotoxin) blocked the papaverine-induced current.

Fig. 3. Effect of papaverine on the current in the presence of BAPTA/(1,2-bis(o-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid).
of BAPTA, a calcium chelator on the papaverine induced current. Papaverine (n=3) did not increase the amplitude of the outward K+ current in the presence of BAPTA(5mM). The current voltage relationship of the study was shown in Fig. 3C.

Discussion

The membrane potential of cerebral arterial smooth muscle is depolarized during vasospasm\(^\text{36,40}\) which follows about 30% of the cases of subarachnoid hemorrhage\(^\text{21}\). This depolarization may play a role in prolonged constriction and vascular hyperreactivity which underlies cerebral vasospasm\(^\text{30,36,39}\). The potassium channel agonist, nicorandil, hyperpolarizes the smooth muscle membrane by increasing potassium conductance and, at least partly, reverses the vasospasm in a canine model of subarachnoid hemorrhage\(^\text{19}\). The mechanisms of opening potassium channels which initiate the relaxation of vascular smooth muscle have been discussed by many authors\(^\text{2,9,11,17,42}\). When a potassium channel opens, potassium diffuses down its electrochemical gradient, transferring positive charge out of the cell, thereby marking the interior of the cell more negative and driving the membrane potential in an hyperpolarizing direction\(^\text{30}\).

KCa, especially the large-conductance KCa(BKCa), has been identified in different cerebral smooth muscle tissues such as rat\(^\text{30,38}\), guinea-pig\(^\text{10}\), cat\(^\text{10}\) and rabbit\(^\text{6}\). These BKCa are voltage-dependent, activated by increased internal calcium, and inhibited by TEA and charybdotoxin. The increase of intracellular calcium can be the result of either influx of extracellular calcium or release of calcium from intracellular stores. A voltage-, calcium-, and charybdotoxin-sensitive, large conductance (220pS) potassium channel has been identified in rat basilar arter\(^\text{34,43}\). This channel is sensitive to the potassium channel openers, cromakalim and pinacidil. Both whole-cell current and single-channel opening probability were increased by bath application of these agents, suggesting that this channel may be involved in the regulation of cerebral smooth muscle tone and the potassium channel openers may be useful in the management of cerebral diseases, including vasospasm. Most known types of potassium channel have been discovered in at least one or two vascular preparations, but it seems likely that in cerebrovascular smooth muscle, most of the potassium current is carried by calcium-activated potassium channels\(^\text{33,34,41,43}\), with delayed rectifiers\(^\text{34,43}\) and inward rectifiers also present.

Intracellular Ca\(^2+\), [Ca\(^2+\)], which plays an important role in the regulation of smooth muscle tone, has been shown to increase in major cerebral arteries after subarachnoid hemorrhage(SAH) and has been suggested to mediate the prolonged contraction that is known as vasospasm of those vessels\(^\text{30,36,39,40}\). A massive Ca\(^2+\) accumulation with formation of intracytoplasmic vacuoles occurred in the smooth muscle cells of canine basilar arteries in vivo 15 minutes after experimental SAH\(^\text{23}\). Erythrocyte hemolysate, oxyhemoglobin or hemin, have been shown to increase [Ca\(^2+\)]\(\text{c}\) in cerebral smooth muscle cells\(^\text{36,37,40}\).

BKCa channels are abundant in vascular smooth muscle and are target proteins for cyclic nucleotide-dependent protein kinases such as cAMP-dependent protein kinase A-kinase. A-kinase has been shown to activate BKCa channels in vascular smooth muscles through phosphorylation of the channel or closely associated proteins.

Thus, cAMP elevation via inhibition of phosphodiesterase by papaverine\(^\text{35,36}\), may mediate the activation of BKCa channels, leading to the relaxant response of cerebral artery to papaverine. This idea can be supported by our present finding. In the present study, the increase of outward K+ current by papaverine was blocked by a selective BKCa blocker, iberiotoxin, as well as a Ca2+ chelator, BAPTA. These results strongly indicate that papaverine opens the BKCa channel. Opening of the BKCa channel leads to hyperpolarization of the vascular smooth muscle, which inhibits the calcium entry through voltage-sensitive Ca\(^2+\) channel, thereby being able to relax the vascular smooth muscle. Considering all of these, our study could explain the underlying mechanism for papaverine-induced vascular relaxation in a new aspect. This is the first report clarifying that papaverine could induce the vascular relaxation through activation of the BKCa channel.

Conclusion

Our results suggest that potassium channels may play a role in papaverine-induced vascular relaxation in rat basilar artery. 1. Papaverine increased the outward K+ current which was completely blocked by IBX and BAPTA in whole cell mode. 2. Papaverine may induce the BKCa channel in a cytosol-dependent manner in intact cerebral basilar smooth muscle cells, thereby contributing to the relaxation of cerebral artery.

Acknowledgement

This study was supported by a grant from Korea Science & Engineering Foundation (KOSEF 981-0706-048-1) and Chonbuk National University to Chul-Jin Kim M.D., Ph.D and by a grant from Dr. Jae-Woo Cho.

References

4. Brayden JF, Nelson MT : Regulation of arterial tone by activation of
6. Brothers MF, Holgate RC: Intracranial angioplasty for treatment of
vasospasm after subarachnoid hemorrhage: technique and modification
7. Cook NS, Quass U: Potassium channel pharmacology. Cook NS, ed.
Potassium channels: structure, classification, function and therapeutic
8. Eckardt DA, Purdy PD, Ginson MC, Samson D, Kupinik T, Batjer H:
Intracranial angioplasty: relief of catheter induced intracranial vasospasm.
AJR Am J Roentgenol 158: 883-884, 1992
10. Gómez-Cabrero D, Ma YH, Falck JR: Mechanism of action of cerebral
endomorphin-1 in cerebral arteries: effect on myogenic tone. J Cereb
Blood Flow Metab 4: 185-191, 1984
11. Hamilton TC, Weston AH: Cerebral ischemia, nicardipine and papaverine:
information on the effects of papaverine and nicardipine. Clin Pharmacol
Ther 57: 451-462, 1995
12. Hudder DR, Dentiach P, Water A: Possible cellular mechanism for cerebral
vasospasm after experimental subarachnoid hemorrhage in the dog. J
Clin Invest 80: 875-880, 1987
13. Higashida RT, Halbach VV, Cahen LD, Brant-Zawadzki M, Barnwell
14. Higashida RT, Halbach VV, Dowd CF, Dornandy B, Bell J, Hishihama
GB: Intravascular balloon dilation therapy for intracranial arterial stenosis:
patient selection, technique, and clinical results. Neurosurgery 15: 899-
905, 1989
15. Honeyman T, Mertam P, Fry FS: The effects of isoproterenol on adrenoreceptors
16. Huddart H, Suad KHM: Papaverine-induced inhibition of electrical and
mechanical properties of rat tail arterial smooth muscle. J Exp Biol 86:
99-114, 1980
17. Kajihara N, Nakashima M, Itamiya K, Kuriyama H: Mechanisms of
vasoconstriction induced by potassium-channel activators. Clin Sci 51:
129-139, 1991
18. Kitagawa Y, Yonemura Y, Tsuchioka T, Kanzawa K: Selective intra-
arterial infusion of papaverine for the treatment of cerebral vasospasm
19. Kassell NF, Helm G, Simmons BS, Phillips CD, Cain WS: Treatment of
cerebral vasospasm with intra-arterial papaverine. J Neurosurg 77:
848-852, 1992
20. Kassell NF, Sasaki T, Colohan ART, Nazar G: Cerebral vasospasm following
TINS 10: 89-92, 1987
levels in canine basilar artery smooth muscle following experimental
subarachnoid hemorrhage: an electron microscopic cytochemical study.
23. LeRoux PD, Newell DW, Eskridge J, Mayberg MR, Winn HR: Severe
tissue ischemia and calcium movements in rat tail arterial smooth
24. Leuten PB, Lieberman K, Nagashima K, Harwood RA, Oddi GB, Duff TA:
Hemin levels in experimental subarachnoid hematoma and effects on
25. Livingston K, Hopkins LN: Intracerebral papaverine as an adjunct to
transcranial angioplasty for vasospasm induced by subarachnoid hemorrhage.
26. Macdonald R, Weir B: A review of hemoglobin and the pathogenesis of
27. Marks MP, Steinberg GK, Lane B: Intracerebral papaverine for the treatment
28. Miyamoto M, Takayago A, Ohkubo H, Takeda K: Actions of papaverine
on intestinal smooth muscle and its inhibition of cyclic AMP and cyclic
for the treatment of symptomatic vasospasm following subarachnoid hemorrhage.
30. Peterson JW, Bun T, Candia GJ, Ronner SF, Charniere K, Zervas NT:
Basilar artery thrombosis is dependent upon cerebral vasospasm due
to subarachnoid hemorrhage. Stroke 16: 138, 1985
31. Poch G, Kukover WR: Papaverine-induced inhibition of phosphodiesterase
activity in various mammalian tissues. Life Sci 10: 135-144, 1971
32. Porel JB, Kranowski JJ, Fitzpatrick DF, Szentivanyi A: Studies on the
inhibition of phosphodiesterase-catalyzed cyclic AMP and cyclic GMP
breakdown and relaxation of canine tracheal smooth muscle. Biochem
Pharmacol 27: 254-256, 1978
kinase activates Ca2+-dependent K+ channels in cerebral artery smooth
34. Stockbridge N, Zhang H, Weir B: Potassium currents of rat basilar artery
smooth muscle cells. Pflugers Arch 421: 37-42, 1992
35. Titter L, Nishita G, Volletiner Y, Overberg NIA, Vorosky M, Haliba DV,
et al.: Cyclic AMP and smooth muscle function. Ann N Y Acad Sci 185:
458-476, 1971
36. Vamos VG, Lasczak TM, Han DH, Kistler JP, Violante J, Black PML,
et al.: Delayed cerebral vasospasm is not reversible by aminophylline,
nitroglycerin, or papaverine in two-hemorrhage canine model. J Neurosurg
58: 11-17, 1985
37. Vollrath B, Weir B, Macdonald R, Cook D: Intracerebral mechanisms
involved in the responses of cerebrovascular smooth-muscle cells to
38. Wang Y, Madeira DA: Ca2+-dependent release of calcium from high
concentration in smooth muscle cells isolated from rat cerebral arteries.
J Physiol 462: 529-545, 1995
smooth muscle following subarachnoid hemorrhage: an electrophysiological
study. J. Changes in resting membrane potential (Em) and effect on the
electrogenic pump potential contribution to Em. Stroke 16: 990-997,
1985
40. Williams GR, Peterson JW, Zervas NT: The relevance of intravascular
muscle experiments to cerebral vasospasm. Stroke 16: 573-581, 1985
41. Wollin GA, Lepeta DC, Simon JM: Effects of external pH on intracellular
ions in smooth muscle cells from the basilar artery of the guinea pig.
Circ Res 71: 201-209, 1992
42. Weston AH: Introductory Remarks: symposium on papaverine (potassium
channel openers in the treatment of hypertension. Drugs 36(Suppl 7):
1-3, 1988
43. Zhang H, Stockbridge N, Weir B: Effects of papaverine, cromakalim and
nicardipine on potassium currents of rat basilar artery smooth muscle.
44. Zhang H, Weir B, Marton LS, Macdonald RL, Bindokas V, Miller RJ,
et al.: Mechanisms of hemolyte-induced [Ca2+]i elevation in cerebral
45. Zubkov Y, Nikiforov BM, Shustin VA: Balloon catheter technique for
dilation of constricted cerebral arteries after aneurysmal subarachnoid
46. Zuccardai M, Bonato GL, Rajput RM, Spedalieri N: Role of membrane
potential in vasospasm after subarachnoid hemorrhage (SAH). Can J