Characteristic Community Dynamics of Phyto- and Zooplankton in a Shallow Eutrophoic Reservoir

얕은 부영양 저수지의 동${\cdot}$식물플랑크톤 군집변화 특성

  • Kim, Ho-Sub (Watershed Management Research Division, National Institute of Environmental Research) ;
  • Kong, Dong-Soo (Watershed Management Research Division, National Institute of Environmental Research) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University)
  • 김호섭 (국립환경연구원 수질총량과) ;
  • 공동수 (국립환경연구원 수질총량과) ;
  • 황순진 (건국대학교 환경과학과)
  • Published : 2005.03.31

Abstract

This study was conducted to understand seasonal dynamics of phyto- and zooplankton communities in a shallow eutrophic reservoir (Shingu reservoir) from November 2002 to February 2004. Cyanophyceae dominated throughout the year, except for spring (March ${\sim}$ May) when Bacillariophyceae (Melosira varians) and Chlorophyceae (Dictyosphaerium puchellum) were dominant. The change of dominant species in Cyanophytes occurred in June and December 2003, and the increase of phytoplankton cell density in July and November was observed when the P loading through two inflows was high. In May, Oscillatoria spp. and Aphanizomenon sp. were dominant, but replaced by Microcystis spp. in the end of May. Dominant Microcystis spp. sustained until December and shifted to Oscillatoria spp. and Aphanizomenon sp. TN/TP ratio ranged from 13 to 46 (Avg. $27{\pm}6$) from June to December when cyanobacteria (Microcystis spp.) dominated. Rotifers such as Keratella cochlearis, Keratella valga, Polyarthra spp., Conochilus unicornis, Pompholyx complanata dominated in average 67.8% of the zooplankton community. Abundance of zooplankton was the highest in June 2003, when Pompholyx complanata (12,388 ind $L^{-1}$) was dominant. In May, the significant increase of Conochilus unicornis biomass ($1,048{\pm}28\;{\mu}g\;C\;L^{-1}$) was observed with distinct improvement of transparency ($Z_{eu}/\;Z_m=\;1.1$). These results suggest that the seasonal variation of phytoplankton communities in this reservoir are to be understood as results of multi-interactive factors such as temperature, light condition and nutrients, and small-sized rotifers as important predator.

본 연구는 수심이 얕은 부영양 저수지에서 동${\cdot}$식물플랑크톤 천이양상을 이해하기 위해 2002년 11원부터 2004년 2월까지 수행하였다. 봄철 규조류와 녹조류가 우점한 시기를 제외하고는 연중 남조류가 우점하였다. 남조류 군집 내 종 조성의 변화는 6월과 12월에 나타났으며, 식물플랑크톤 밀도 증가는 유입부하량이 많았던 7월과11월에 관찰되었다. 남조류는 5월에 Oscillatoria spp.와 Aphanizomenon sp.의 우점 이후 Microcystis spp.가 우점하였으며, 12월 이후에는 Oscillatoria spp.와 Aphanizomenon sp.의 밀도가 증가하였다. 남조류 군집 중 Microcystis spp.가 우점한 6월부터 12월까지 수체 내 TN-TP비는 13 ${\sim}$ 46의 범위 (평균 $27{\pm}5$)였다. 동물플랑크톤 군집 중 Keratella cochlearis, Keratella valga, Polyarthra spp., Conochilus unicornis, Pompholyx complanata와 같은 윤충류의 점유율이 평균 67.8%로 높았다. 동물플랑크톤의 최대 밀도는 Pompholyx complanata (12,388 ind $L^{-1}$)가 우점한 6월에 관찰되었다. 최대 생물량은 Conochilus unicornis ($1,048{\pm}28\;{\mu}gC\;L^{-1}$)가 우점한 5월에 관찰되었고 투명도가 현저히 증가하였다($Z_{eu}/\;Z_m=\;1.1$).본 연구 결과는 수심이 얕은 부영양 저수지에서 식물플랑크톤 군집 변화가 수온, 광도 그리고 영양염 농도의 복합적인 영향으로 이해될 필요가 있고, 윤충류가 식물플랑크톤의 생물학적 조절자로서 중요한 역할을 수행할 수 있음을 제시한다.

Keywords

References

  1. 김범철, 김재옥, 전만식, 황순진. 1999. 소양호 동∙식물플랑크 톤의 계절변동. 한국육수학회지 32: 127-134
  2. 김윤희. 1998. 홍수시 소양호에서 중층탁류의 이동 및 영향에 관한 연구. 강원대학교 환경학과 석사학위논문
  3. 김호섭, 황순진, 박제철. 2003. 수심이 얕은 부영양 인공호 (일감호)의 동∙식물플랑크톤 동태학. 한국육수학회지 36: 286-294
  4. 김호섭, 황순진. 2004a. 얕은 부영양 저수지의 육수학적 특성: 계절에 따른 수질변화. 한국육수학회지 37: 180-192
  5. 김호섭, 황순진. 2004b. 육수학적 특성에 따른 국내 저수지의 부영양화 유형분석: 엽록소 a와 수심을 중심으로. 한국육수학회지 37: 213-226
  6. 조규송. 1993. 한국담수동물플랑크톤 도감. 아카데미서적
  7. Andersen, A. and D.O. Hessen. 1991. Carbon, nitrogen, and phosphorus contents of freshwater zooplankton. Limnol. Oceanogr. 36: 807-814 https://doi.org/10.4319/lo.1991.36.4.0807
  8. Balcer, M.D., N.L. Korda and S.I. Dodson. 1984. Zooplankton of the great lakes. A guide to the identification and ecology of the common crustacean species. The university of Wisconsin Press
  9. Benndorf, J. and M. Henning. 1989. Daphnia and toxic blooms of Microcystis aeruginosa in Bautzen Reservoir (GDR). Int. Rev. ges. Hydrobiol. 74: 233-248 https://doi.org/10.1002/iroh.19890740302
  10. Carpenter, S.R. and J.R. Kitchell. 1993. Cascading trophic interactions and lake productivity. Bioscience 35: 634- 639 https://doi.org/10.2307/1309989
  11. Cichra, M.F., S. Badylak, N. Henderson, B.H. Rueter and E.J. Phlips. 1995. Phytoplankton community structure in the open water zone of a shallow subtropical lake (Lake Okeechobee, Florida, U.S.A.). Archiv fur Hydrobiologie, Advances in Limnology 45: 157-175
  12. Cooke, G.D., E.G. Welch, S.P. Peterson and P.R. Newroth. 1993. Restoration and management of lakes and reservoirs (2nd ed.). Lewis. Boca Raton. p.548
  13. Culver, D.A., M.M. Boucherle, D.J. Bean and J.W. Flethcer. 1985. Biomass of freshwater crustacean zooplankton from Length-Weight regressions. Can. J. Fish. Aquat. Sci. 42: 1380-1390 https://doi.org/10.1139/f85-173
  14. Downing, J.A. and F.H.R. Rigler. 1984. A mamual on methods for the assessment of secondary productivity in freshwaters. Blackwell Scientific Publications. pp 247-249
  15. Dumont, H.J., L.V. De Velde and S. Dumont. 1975. The dry weight estimate of biomass in a selection of cladocera, copepoda, and rotifera from the plankton, periphyton, and benthos of continental waters. Oecologia 91: 75- 97
  16. Gilbert, J.J. 1990. Differential effects of Anabaena affinis on cladocerans and rotifers: mechanisms and implications. Ecol. 7: 1727-1740
  17. Gilbert, J.J. and R.S. Stemberger. 1985. Control of Keratella populations by interference competition from Daphnia. Limnol. Oceanogr. 30: 180-188 https://doi.org/10.4319/lo.1985.30.1.0180
  18. Hall, D.T., S.T. Threlkeld, C.W. Burns and P.H. Crowley. 1976. The size-efficiency hypothesis and the size structure of zooplankton communities. Annual Review of Ecology and Systematics 7: 177-208 https://doi.org/10.1146/annurev.es.07.110176.001141
  19. Hoyer, M.V. and J.R. Jones. 1983. Factors affecting the ralation between phosphorus and chlorophyll a in USA midwestern reservoirs. Can. J. Fish. Aquat. Sci. 40: 192-199 https://doi.org/10.1139/f83-029
  20. Hutchinson, C.E. 1957. A treaties on limnology. I, Geography Physics and Chemistry. New York, Jone Wiley and Sons Inc. p.1015
  21. Jeppesen, E., P. Kristensen, J.P. Jensen, M. Sndergaard, E. Mortensen and T.L. Lauridsen. 1991. Recovery resilience following a reduction in external phosphorus loading of shallow eutrophic danish lakes: duration, regulating factors and methods for overcoming resilience. Memorie dell'sIstituto Italiano di Idrobiologia 48: 127-148
  22. Kalff, J. 2002. Limnology, Inland Water Ecosystem. Prentice- Hall, Inc
  23. Kappers, F.I. 1984. On population dynamics of the cyanobacterium Microcystis aeruginosa. Ph.D. thesis, University of Amsterdam
  24. Kellar, P.E., S.A. Paulson and L.J. Paulson. 1980. Methods for biological, chemical and physical analyses in reservoirs. Technical Report, Lake Mead Limnological Research Center, University of Nevada, Las Vegas, p.234
  25. Klemer, A.R. 1973. Factors affecting the vertical distribution of a blue-green alga. PhD thesis, University of Minnesota
  26. Klemer, A.R. 1976. The vertical distribution of Oscillatoria agardhii var. isothrix. Arch. Hydrobiol. 78: 343-362
  27. Konopka, A.E., A.R. Klemer, A.E. Walsby and B.W. Ibelings. 1993. Effects of macronutrients upon buoyancy regulation by metalimnetic Oscillatoria agardhii in Deming Lake, Minnesota. J. Plankton Res. 15: 1019-1034 https://doi.org/10.1093/plankt/15.9.1019
  28. Kruger, G.H. and J.N. Eloff. 1978. The effect of temperature on specific growth rate and activation energy of Microcystis and Synechococcus isolates relevant to the onset of natural blooms. J. Limnol. Soc. sth. Afr. 4: 9- 20
  29. Lampert, W. 1987. Laboratory studies on zooplanktoncyanobacteria interactions, N. Z. J. Mar. Freshwat. Res. 21: 483-490 https://doi.org/10.1080/00288330.1987.9516244
  30. Lampert, W., W. Flecker, H. Rai and E. Taylor. 1986. Phytoplankton control by grazing zooplankton : A study on the spring clear-water phase. Limnol. Oceanogr. 31: 478-490 https://doi.org/10.4319/lo.1986.31.3.0478
  31. Lathrop, R.C. and S.R. Carpenter. 1990. Zooplankton and their relationship to phytoplankton, p.127-150. In: Food Web management (J. F. Kitchell, ed.). Springer- Verlag, New York
  32. Mullin, M.M., P.R. Sloan and R.W. Eppley. 1966. Relationship between carbon content, cell volume, and area in phytoplankton. Limnol. Oceanogr. 11: 307-311 https://doi.org/10.4319/lo.1966.11.2.0307
  33. Nicklisch, A. and J.G. Kohl. 1983. Growth kinetics of Microcystis aeruginosa (Kutz) Kutz as a basis for modelling its population dynamics. Int. Rev. ges. Hydrobiol. 68: 317-326 https://doi.org/10.1002/iroh.19830680304
  34. Pace, M.L. and J.D. Orcutt. 1981. The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community. Limnol. Oceanogr. 26: 822- 830 https://doi.org/10.4319/lo.1981.26.5.0822
  35. Phlips, E.J., M. Cichra, K.E. Havens, C. Hanlon, S. Badylak, B. Rueter, M. Randall and P. Hansen. 1997. Relationships between phytoplankton dynamics and the availability of light and nutrients in a shallow subtrophical lake. J. Plankton Res. 19: 319-342 https://doi.org/10.1093/plankt/19.3.319
  36. Reynolds, C.S. 1980. Phytoplankton assemblages and their peridicity in stratifying lake system. Holarctic Ecology 3: 141-159
  37. Reynolds, C.S. 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater biol. 14: 111-142 https://doi.org/10.1111/j.1365-2427.1984.tb00027.x
  38. Reynolds, C.S. 1987. Cyanobacterial water-blooms. In J. Callow (ed), Advances in Botanical Research, Academic Press, London 13: 437-481
  39. Reynolds, C.S. 1989. Relationships among the biological properties, distribution and regulation of production by planktonic cyanobacteria. Toxicity Assessment 4: 229- 255 https://doi.org/10.1002/tox.2540040302
  40. Reynolds, C.S. 1993. The Ecology of freshwater Phytoplankton. Cambridge University Press, Cambridge, U.K. p 384
  41. Reynolds, C.S. 1989. Relationships among the biological properties, distribution and regulation of production by planktonic cyanobacteria. Toxicity Assessment 4: 229- 255 https://doi.org/10.1002/tox.2540040302
  42. Robarts, R.D. and T. Zohary. 1987. Microcystis aeruginosa and underwater light attenuation in a hypertrophic lake (Hartbeespoort Dam, South Africa). J. Ecol. 72: 1001-1017
  43. Romo, R. and R. Miracle. 1994. Long-term phytoplankton changes in a shallow hypertrophic lake, Albufera of Valencia (Spain). Hydrobiologia 275/276: 153-164 https://doi.org/10.1007/BF00026707
  44. Sommer, U., Z.M. Gliwicz, W. Lampert and A. Duncan. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433-471
  45. Stemberger, R.S. 1979. A guide to rotifers of the Laurentian Great Lakes. EPA-600/4-79-021
  46. Sterner, R.W. and J.P. Grover. 1998. Algal growth in warm temperate reservoirs: Kinetic examination of nitrogen, temperature, light, and other nutrients. Wat. Res. 32: 3539-3548 https://doi.org/10.1016/S0043-1354(98)00165-1
  47. Strathmann, R.R. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12: 411-418 https://doi.org/10.4319/lo.1967.12.3.0411
  48. Van der Molen, D.T. and P.C. M. Boers. 1994. Influence of internal loading on phosphorus concentration in shallow lakes before and after reduction of the external loading. Hydrobiologia 275/276: 379-389 https://doi.org/10.1007/BF00026728
  49. Vanni, M.J. and J. Temte. 1990. Seasonal patterns of grazing and nutrient limitation of phytoplankton in a eutrophic lake. Limnol. Oceanogr. 12: 411-418 https://doi.org/10.4319/lo.1967.12.3.0411
  50. Walsby, A.E. and A.R. Klemer. 1974. The role of gas vacuoles in the microstratification of a population of Oscillatoria agardhii var. isothrix in Deming Lake, Minnesota. Arch. Hydrobiol. 74: 375-392
  51. Wasmund, N. 1989. Live algae in deep sediment layers. Int. Rev. Ges. Hydrobiol. 74: 589-597 https://doi.org/10.1002/iroh.19890740602
  52. Williams, W.F. and J.W. Barko. 1991. Estimation of phosphorus exchange between littoral and pelagic zones during nighttime convective circulation. Limnol. Oceanogr. 36: 179-187 https://doi.org/10.4319/lo.1991.36.1.0179
  53. Zevenboom, W., A.B. de Vaate and L.R. Mur. 1982. Assessment of factors limiting growth rate of Oscillatoria aqardhii in hypereutrophic Lake Wolderwijd, 1978, by use of physiological indicators. Limnol. Oceanogr. 27: 39-52 https://doi.org/10.4319/lo.1982.27.1.0039