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Relative importance between bottom-up and top-down controls on phytoplankton
dynamics was investigated in the Juam Reservoir, Chonnam based on the results
from statistical analyses including regression and artificial neural network (ANN)
modeling. Effects of nutrients on size-structured phytoplankton dynamics were
explored by simple linear regression analysis and relative importance between
bottom-up and top-down controls was estimated based on results from the
artificial neural network analyses. Although there is a limitation in determining
direct grazing effects since chlorophyll a: pheopigments ratios, indirect index for
grazing activity rather than grazing rates or herbivores biomass were used, the
results from regression analysis showed that nutrients especially orthophosphates
were positively correlated with the phytoplankton biomass and chlorophyll a:
pheopigments ratios were also positively correlated with the phytoplankton biomass
at lower coefficient of determination (r?) compared to orthophosphates. The
simulation results from ANN suggested that the bottom-up mechanisms including
water temperature and availability of nutrients, especially orthophosphates were
more important than top-down mechanisms such as grazing in the phytoplankton
dynamics.
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P) in a food web (Kemp and Boynton, 1981;

INTRODUCTION Boynton et al., 1982; Coffin and Sharp, 1987;

Sundbaeck et al., 1990). Phytoplankton affect

Understanding the dynamics of phytoplankton water quality, especially dissolved oxygen by
is important since as primary producers they are photosynthesis and respiration and can serve as
the main source of carbon and nutrients (e.g. N, substrates for microbial decomposition resulting
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in oxygen depletion when their ungrazed biomass
has accumulated (Malone et al., 1986; Sundbaeck
et al., 1990).

Two concepts are generally accepted as the
major mechanisms governing phytoplankton
dynamics in aquatic systems. One is bottom-up
control such as nutrient supply related to physi-
cal-chemical variations (i.e. abiotic mechanisms)
and the other is top-down control (i.e. biotic,
trophic interactions). There has been continuing
debate regarding the relative importance of
bottom-up vs. top-down controls and established
concepts of resource competition (Tilman, 1982)
and trophic cascade (Carpenter et al., 1985) or
the trophic biomanipulation theory (Shapiro and
Wright, 1984). It is generally accepted that the
relative importance of bottom-up vs. top—-down
regulations of phytoplankton structure is scale-
dependent; the structure is determined neither
entirely by resources competition nor trophic cas-
cade over time scales of interest (Hansson, 1992).

Artificial neural networks (ANNSs), which are
composed of simple elements operating in par-
allel, can be trained to solve many complex pro-
blems in almost all fields of science and techno-
logy (Karul et al., 2000; Gevrey et al., 2003).
Three layer backpropagation feedforward neural
network with a sigmoid transfer function at the
input layer can approximate any function that
has finite number of discontinuities (Priyantha et
al., 1997; Olden, 2000; Wilson and Recknagel,
2001; Lee et al., 2003; Jeong et al., 2003). In
recent years, neural networks were used in the
fields of limnology and phytoplankton dynamics
(Olden, 2000; Jeong et al., 2001; Scardi, 2001;
Lee et al., 2003). Neural networks are ideal to
estimate this nonlinear behavior of chlorophyll a
as well as major controlling factor between bot-
tom-up vs. top—down controls of phytoplankton
dynamics since phytoplankton dynamics are
complex interacting with environmental factors
(nutrients, light, hydrodynamics) and herbivores.

In the companion paper (Sin and Kim, 2003),
temporal and spatial variations of size-struc-
tured phytoplankton and physical properties were
reported and the principal goals of this study
were to examine the relationship between phyto-
plankton size classes and various chemical pro-
perties and then determine the relative impor-
tance between bottom-up and top-down mech-
anisms controlling phytoplankton dynamics in
the Lake Juam by statistical analyses including

regression and artificial neural network analyses.

MATERIALSAND METHODS

Study site and nutrient measurements

Lake Juam is composed of the Bosung River, a
subriver of the Sumjin River and general charac-
teristics of the Lake Juam and measurements of
chlorophyll a and physical properties were desc-
ribed in a companion paper (Sin and Kim, 2003).
In addition to the physical properties reported by
Sin and Kim (2003), nutrient concentrations
including dissolved nitrogen (DN) dissolved phos-
phorous (DP), total nitrogen (TN), total phospho-
rous (TP), ammonium (NH;"), nitrate (NO3),
phosphate (PO,%") were measured in the Lake
Juam. Figure 1 shows sampling stations to collect
data employed in this study. For nutrient measu-
rements samples were filtered using GF/F (0.7
pm pore size) and stored at refrigerator (in 250
mL PE bottles) until analyzed as discussed in
Parsons et al. (Parsons et al., 1984). After measu-
rement of chlorophyll a using a Turner Designs-
10-AU Fluorometer, two drops of HCI (2N) were
added and the extracts re-read for determination
of pheopigments following acidification. Grazers
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Fig. 1. Sampling stations in the lower (Stations 1, 2, 3)
and upper (Stations 4, 5) regions of Lake Juam.
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convert chlorophyll a to pheopigments, which are
released as egested fecal material. The ratio of
chlorophyll a and pheopigments, determined by
the ratios of fluorescence before and after acidifi-
cation is an indirect measure of grazing activity
(e.g. Welschmeyer and Lorenzen, 1985); the low-
er the ratio, the higher the grazing rates. Sus-
pended pheopigments can also be produced with-
in phytoplankton cells during senescence as a
result of poor growth environments or prolonged
exposure to the dark (Yentsch, 1967; Daley and
Brown, 1973).

Simplelinear regression analysis

Using a simple linear regression, the relation-
ships were explored between the chlorophyll a
concentrations of various phytoplankton size
classes and various chemical properties of the
Lake Juam, specifically dissolved nitrogen (DN),
dissolved phosphorus (DP), total nitrogen (TN),
total phosphorus (TP), ammonium, nitrate,
orthophosphate, DN : DP, TN : TP, and DIN
(NHs"+NO3") : DIP (PO4*") molar ratios as well
as chlorophyll a: pheopigments ratio. Phytoplan-
kton size classes included three size classes:
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micro-size (>20 pm), nano-size (3-20 pum) and
pico-size (<3 pm).

Framework of artificial neural network

The used network consists of three layers:
input layer of 17 neurons, hidden layer of five
neurons, output layer of one neuron which is the
output variable (Fig. 2). There are connection
weights between input and hidden layers, hidden
and output layers. The network was trained
using an error backpropagation training algori-
thm. This algorithm adjusts the connection
weights according to the backpropagated error
computed between the observed and the estima-
ted results. This procedure minimizes the error
between the desired and the predicted outputs
(Gevrey et al., 2003; Lee et al., 2003).

The input data were transformed by Weibull
distribution probability function (equation 1)
since the variations of the field data are high and
stochastic, and ranges of the input data are diffe-
rent between variables (c.f. Martz and Walker,
1982; Mann et al., 1997). After the transforma-
tion, the data sets have been rescaled into a [0,1]
interval before training the neural networks,

L2 L3

Fig. 2. Structure of the neural network (L1: input layer of neurons with variables at the entry of the system, L2: hidden
layer of neurons, L3: output layer of neurons with a single neuron corresponding to the single dependent variable,
Wij and Wik : the weights between hidden and input layer, and between output and hidden layer).
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whereas neural network output has always been
scaled back to its original units. To introduce
nonlinearity into a system the sigmoid function
is adopted as the activation functions that trans-
fers the summed inputs to the output layer (c.f.
Scardi, 2001).

F(t)=1-exp [—<%>]B (1)

where, o = Measuring Parameter, 3 = Shape
Parameter

To investigate phytoplankton dynamics chemi-
cal, physical and biological parameters were
periodically measured in the Juam reservoir and
the parameters were considered as input neurons
for ANN modeling processes including water
temperature, light attenuation coefficients (Kg),
PAR at 1.1 m water depth, photo-period, precipi-
tation, dissolved nitrogen (DN) dissolved phosp-
horous (DP), total nitrogen (TN), total phospho-
rous (TP), ammonium, nitrate, phosphate, pH,
DN :DP, TN : TP, NH," +NO3 /PO,* (DIN/DIP),
and chlorophyll a: pheopigments ratio.

Chlorophyll a was used as the primary target
output of the training sessions. Chlorophyll a
which represent phytoplankton biomass in eco-
systems was output neurons in output layer of
ANN modeling processes.

RESULTS

Simplelinear regression analysis

Table 1 shows results (r) of linear regression
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analyses of relationships between the chlorophyll
a concentrations of phytoplankton size classes and
various chemical properties of the Lake Juam,
specifically dissolved nitrogen (DN), dissolved
phosphorus (DP), total nitrogen (TN), total phos-
phorus (TP), ammonium, nitrate, orthophosphate,
DN:DP, TN: TP, and DIN: DIP ratios as well as
chlorophyll a: pheopigments ratio. Phytoplankton
size classes generally showed positive relation-
ship with DN whereas size classes had negative
relationships with DP. TP was also positively
correlated with (o = 0.05) chlorophyll a concen-
trations of the size classes except nano-size class
at Station 3. Nitrate was negatively correlated
with chlorophyll a concentrations of the size
classes whereas the opposite relationship was
observed for orthophosphate. DN/DP ratios were
generally positively correlated with chlorophyll a
concentrations of size classes except nano-size
class whereas TN : TP ratios were negatively
correlated with chlorophyll a concentrations ex-
cept nano-sized chlorophyll a concentrations.
Nano-sized chlorophyll a concentrations were
significantly positively correlated with DIN : DIP
ratios (o = 0.05) whereas other sized chlorophyll a
concentrations were generally negatively corre-
lated. Chlorophyll a : pheopigments ratios were
positively correlated with chlorophyll a concent-
rations of size classes.

Artificial neural network analysis

After the training of 10,000 iterations, the mean
square error decreased lower than 0.07 with 5
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Fig. 3. Response of phytoplankton biomass (chlorophyll a) to changes of : (A) temperature (°C) and precipitation (mm); (B)
light attenuation coefficients (m™) and photo-period (h) in the artificial neural network model for the Lake Juam.
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hidden nodes. Results from Fig. 3 to Fig. 5 repre-
sent the variation of chlorophyll a in response to
converted input data using Weibull distribution
probability. Chlorophyll a concentrations were
decreased as water temperature and precipita-
tion increased (Fig. 3A). Negative relationship
was also observed between chlorophyll a concen-
trations and photo-period whereas positive re-
lationship observed with light attenuation coef-
ficients and PAR at 1.1 m water depth (Fig. 3B).
Chlorophyll a concentrations were increased as
DN and DP increased (Fig. 4B). Negative rela-
tionship was observed between chlorophyll a con-
centrations and TN whereas positive relation-
ship observed with TP (Fig. 4C). Chlorophyll a
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concentrations were decreased as dissolved inor-
ganic nitrogens such as ammonium (NH,;") and
nitrate (NO3") were increased but phytoplankton
biomass was increased as orthophosphate (PO,*")
concentrations increased (Fig. 4A). Chlorophyll a
concentrations were decreased as ratios of TN :
TP and DIN : DIP increased (Fig. 4D). Chloro-
phyll a concentrations were increased as chloro-
phyll a: pheopigments ratios increased but the
concentrations did not respond to increase of pH
(Fig. 5).

The simulation results suggested that water
temperature, photo-period, nitrate and total ni-
trogen (TN) are the major factors affecting phyto-
plankton biomass negatively whereas PAR (1.1
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Fig. 4. Response of phytoplankton biomass (chlorophyll a) to changes of : (A) NH,", NOs™ and PO,*" (uM); (B) dissolved
nitrogen (DN, uM) and dissolved phosphorus (DP, uM); (C) total nitrogen (TN, uM) and total phosphorus (TP, uM);
(D) TN: TP and DIN (NH4"+NO3") : DIP (PO,%") molar ratios in the artificial neural network model for the Lake

Juam.
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Table 1. Results (r?) of linear regression analyses of surface chlorophyll a (ug L™ vs. dissolved nitrogen (DN, uM),
dissolved phosphorus (DP, uM), total nitrogen (TN, pM), total phosphorus (TP, uM), nutrients (NH, ", NOs™ and
PO,*"), molar ratios of DN : DP, TN : TP and DIN : DIP, and chlorophyll a: pheopigments ratios during the
sampling period. r? values less than 0.2 were omitted and denoted by-. Negative values denote negative

relationship
DN DP TN TP NHsT NOs PO, DN/DP TN/TP DIN/DIP chla:pheo
Station1 - - - 0.81° - - - -0.32 - -
Whol Station 2 - -058 - 0.22 - 0.70° 035 -023 -041 0.45
Chlom‘;ﬁy“ , Station3 - - - - - 047 - - ~0.29 0.45°
Station4 028 - 0.34 024 0.30 0.29 - - - -
Station 5 - - - - -0.53* - - - - 0.51%
Station1 - - - 0.81° - - - -0.31 - -
Station 2 -  -058 - 021 - - 0.69° 0.34 -022 -041 -
Micro-size class Station 3 - - - - -0.20 - 0.442 - - -0.28 0.36
Station4 039 - 0.50 0.37 0.32 0.39 - - - -
Station 5 - - - - -0.51* - - - - 0.32
Station 1 - 022 - - - - -0.38 - 0.50% -
Station 2 - - - - 024 - - - - -
Nano-size class Station3 - - - 053" - 038 - 0.52° - -
Station4 - - - - - - - - - -
Station5 -0.40 - - - -0.87° -0.30 -0.37 -020 -0.23 0.36
Station1 021 - - 0.35 - - 0.20 - - 0.65"
Station2  0.27 -0.54* 021 046 026 - 0.85° 063 - -0.24 0.22
Pico-size class  Station 3 - - - - - 074> - - - -
Station4 - - - 0.48 - - - -0.32 - -
Station 5 - - - -0.23 - - 0.40 0.40 0.39 0.41
3p<0.1, "P<0.05
= pH —o— chl a:pheopigments | g_razing activity of grazers, affected phytoplankton
300 biomass but the relative importance was not
high compared with other factors including phy-
I sical and chemical properties.
_gl 200 o™
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S 100- In the companion paper (Sin and Kim, 2003),
5 biomass of larger phytoplankton (micro-sized)
50- was high in the lower region of the Lake Juam
and phytoplankton blooms were mainly predo-
minated by large cells i.e. micro-size class throu-
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Fig. 5. Response of phytoplankton biomass (chlorophyll a)
to changes of pH and chlorophyll a: pheopigments
ratio in the artificial neural network model for the
Lake Juam.

m), orthophosphate (PO,%"), DP and TP are the
major factors affecting positively. The chloro-
phyll a : pheopigments ratios, indirect index for

ghout the sampling period. The results from
regression analyses on chemical parameters
(Table 1) show that correlationship between
micro-sized phytoplankton and various para-
meters is generally similar to relationship bet-
ween total chlorophyll a and chemical properties.
Phytoplankton size classes were significantly
and negatively correlated with nitrogen nut-
rients including ammonium and nitrate but
positively correlated with orthophosphate. This
results suggest that phytoplankton growth is
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limited by P and supply of dissolved inorganic
phosphorus contribute to phytoplankton blooms
in the Lake Juam. The potential P limitation
was also reported based on long-term data an-
alyses for the Lake Juam (Chang et al., 2004).
DIN : DIP and TN : TP molar ratios were also
higher than 16: 1 in this study (data not shown).
Artificial neural networks (ANNSs) has been
used in order to predict multivariate or non-
linear data. Applications of ANNSs in ecological
and environmental science have been reported
since the beginning of the 1990s (Barciela et al.,
1999; Lee et al., 2003). The advantages of ANNSs
are: (i) they can provide quick response and
hence are well-suited for real time operation;
and (ii) most importantly ANNs can model dyna-
mic, non-linear, especially when physical/chemi-
cal/biological processes are interacting compli-
cate. Neural networks are powerful tools for stu-
dying phytoplankton dynamics and the neural
networks were employed to predict phytoplan-
kton dynamics in Nakdong River (Jeong et al.,
2001). Algal bloom dynamics of the coastal water
of Hong Kong were also investigated by using
backpropagation learning algorithm (Lee et al.,
2003). In this study, the ANNs were used to
determine relative importance between bottom-
up and top-down controls in phytoplankton
dynamics in the Lake Juam. Results from the
ANNSs simulation (Figs. 3-5) showed that phyto-
plankton biomass may be controlled by water
temperature and this scenario is supported by
the negative relationship between micro-sized
chlorophyll a, dominant size class during the
sampling period, and water temperature (Sin
and Kim, 2003). Nitrates and orthophosphates
were also correlated with simulated phytoplan-
kton biomass but the relationships were reversed
(Fig. 4A). Results from regression analyses on
the nutrients vs. various sized-chlorophyll a
showed the similar relationships (Table 1). N: P
ratios of ambient nutrient concentrations in this
study were much higher than 16 : 1 suggesting
that phytoplankton growth may be limited by P.
The positive relationships of orthophosphates
with chlorophyll a concentrations and the high N
: P ratios suggest that orthophosphates are more
important nutrients controlling the phytoplank-
ton biomass in the Lake Juam. Various sized-
chlorophyll a concentrations were positively cor-
related with ratios of chlorophyll a: pheopig-
ments (indirect index of grazing activity by gra-

zers) suggesting that phytoplankton biomass is
controlled by grazing pressure of grazers in the
Lake Juam (Table 1). Simulated phytoplankton
biomass in the ANNs modeling also showed a
positive relationship with the ratios of chloro-
phyll a : pheopigments but the sensitivity of chl-
orophyll a to the changes of chlorophyll a: pheo-
pigments ratio was low compared with other
parameters such as temperature and nutrients.
Although more complete investigations including
direct grazing effects and other sink processes
are required, these results suggest that bottom-
up mechanisms including water temperature
and nutrient availability are relatively impor-
tant compared to top-down mechanisms such as
biological interaction (i.e. grazing) in the Lake
Juam.
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