40

Journal of Contents Volume 1, Number 1, April 2005

Enhanced Region Partitioning Method of Non-perfect nested Loops with
Non-uniform Dependences

Sam-Jin Jeong*
Division of Information and Communication Engineering
Cheonan University, Cheonan, Korea

ABSTRACT

This paper introduces region partitioning method of non-perfect nested loops with non-uniform dependences. This kind of
loop normally can't be parallelized by existing parallelizing compilers and transformations. Even when parallelized in rare
instances, the performance is very poor. Based on the Convex Hull theory which has adequate information to handle
non-uniform dependences, this paper proposes an enhanced region partitioning method which divides the iteration space
into minimum parallel regions where all the iterations inside each parallel region can be executed in parallel by using

variable renaming after copying.

Keywords: Parallelizing Compiler, Non-perfected Loops, Non-uniform Dependences, Region Partition.

1. INTRODUCTION

DA lot of work has been done in parallelizing loops
with uniform dependences, from dependence analysis to
loop transformation. Many techniques have been proposed
for parallelizing these kinds of loops, such as loop
interchange, loop permutation, skew, reversal, wavefront,
tiling, etc [3.,4,5,6].

Example :

dol= l1, uj
Si: ARi+4,i+5=...
dOJ= lz, U
Sy =AT+ 2+ 2,0 4))
enddo
enddo

According to an empirical study[7], nearly 45% of two
dimensional array references are coupled and most of
these lead to non-uniform dependences. This paper focuses
on parallelizing non-perfect nested loops with non-uniform
dependences. Our approach is based on the Convex Hull
theory which has been proved [2] to have enough
information to handle non-uniform dependences. Based on
Unique set theory [1], we will divide the iteration space
into several parallel regions where all the iterations inside
each parallel region can be executed in parallel. Our
technique subsumes the above techniques. And for
maximize parallelism, we minimize the size of the parallel
region by variable renaming.

The rest of this paper is organized as follows. Section
two describes our program model, reviews some

*Corresponding author. E-mail : sjjeong @cheonan.ac.kr
Manuscript received Jan 26, 2005; accepted Feb 17, 2005

fundamental concepts and introduces the concept of
Complete Dependence Convex Hull. Section three presents
three cases starting from simpler cases and leading upto
the more complicated ones of doubly nested non-perfect
loops with non-uniform dependences. Section four extends
this technique to the general program model, and shows
the enhanced region partitioning method which divides the
iteration space into minimum parallel regions by using
variable renaming. Finally, we conclude in section five.

2. PROGRAM MODEL AND DEPENDENCE ANALYSIS

We consider doubly nested loop program of the form
shown in Fig. 1. For the given loop, I; (I2) and u; (us)
indicate the lower and upper bounds respectively, and
should be known at compile time. We also assume that
the program statements inside these nested loops are
simple assignment statements of arrays. The dimensionality
of these arrays is assumed to be equal to the nested loop
depth. To characterize the coupled array subscripts, the
array subscripts, fi(1, J), fxl, J), and fi«I, J), are linear
functions of the loop index variables.

do I = l], 117
S A, D, U, D) = . ..
do J = lz, 113
S; oo =AU D, T
enddo
enddo

Fig. 1. Doubly nested Non-perfect Loop Program Model

The most common method to compute data dependences
involves solving a set of linear diophantine equations with
a set of constraints formed by the iteration boundaries.

Enhanced Region FPartitioning Method of Non-perfect nested Loops with Non-uniform Dependences 41

The loop in Fig. 1 carries cross iteration dependences if
and only if there exist four integers (is, j;, iz Jj2)
satisfying the system of linear diophantine equations given
by (2.1) and the system of inequalities given by (2.2).
The general solution to these equations can be computed
by the extended GCD [10] or the power test algorithm
[11] and forms a DCH.

Silis, j) = fi(iz, j2) and fo(is, j1) = fa(iz, j2) 2.1

L= fwandji=0L-1 5L < j, < u (22)

There are two approaches to solve the system of
Diophantine equations of (2.1). One way is to set i; to x;
and j; to y; and get the solution of i; and jo.

axiz + by + ¢ = anx; + cn
aniz + byjr + cn = anx; + cn

We have the solution as

2 = aux; + Y
Jj2 = anx; + 2
where
an = (anbn - apnbn)(anbn - anbyn)

= (bncit + bucn - bnca - bucp)/(anbn - anb)
an = (auan - auan)/(aubn - anbn)
iz = (@2iciz + anca - aucn - axcu)(anbxn - anbn)

The solution space is the set of points (x, y) satisfying
the equations given above. The set of inequalities can be
written as

11 = X7 < 1734 (23)
yr = lz - 1

L = auxi + vu < wy

L= anpg + 2 S w2

where Eq. (2.3) defines a DCH denoted by DCH1.
Another approach is to set iz to x; and j2 to y; and solve

for the solution of i; and j;.

ani;r + ¢ = aaxz + buy: + ca
api; + c12 = anxz + bny: + »

We have the solution as

@ixz + ;821y2 + Vi

ir

Jir = anx: + 522)’2 + Va2
where
@1 = anlan
Ba1 = badan

Y21 = (cai-c1)an
a = aplan
B = bnlan

Y22 = (c-cr2)lan

The solution space is the set of points (x, y) satisfying
the solution given above. In this case the set of

inequalities can be written as

L < @mx: + Gy + 11 = wy (2.4)

L < anx: + Poyr + v2 < w2
I = X2 < w
L < y2 = u

where Eq. (2.4) defines another DCH, denoted by DCH2.
The above two sets of solutions are both valid. Each of
them has the dependence information on one extreme. For
some simple cases, for instance, since there is only one
kind of dependence, either flow or anti dependence, one
set of solution (ie. DCH) should be enough.
Punyamurtula and Chaudhary used Eq. (2.3) for their
technique [8], while Zaafrani and Ito used Eq. (2.4) for
their technique [9]. For those more complicated cases,
where both flow and anti dependences are involved and
dependence patterns are irregular, we need to use both
sets of solutions.

If iteration (i», j») is dependent on iteration (i;, ji), then
we have a dependence distance vector d(x, y) with

dix, y) = i2 - i 2.5)
dix,) = j2 - Ji

So, for DCHI1, we have

dix1, y1) = (au - Dxr + v (2.6
di(xr, yi) = aixr + yiz - L+ 1

For DCH2, we have

di(x2, y2) = (1 - @a)xz - Pay2 - v 2.7
dfxz, y2) = (1 - aw)xz - Bay: - v
ditx2, y2) = y2 - b+ 1

Clearly if we have a solution (x;, y;) in DCHI1, we must
have a solution (x2, y2) in DCH2, because they have been
solved from the same set of linear Diophantine Eq. (2.1).
The union of DCH1 and DCH2 is called Complete
Dependence Convex Hull (CDCH), and all dependences
lie within the CDCH. The properties of DCH1 and DCH2
can be found in [1].

3. PARALLELIZATION OF NON-PERFECT LOOPS
WITH NON-UNIFORM DEPENDENCES

Based on the unique head and tail sets that we can
identify, there are at most four sets, i.e., flow dependence
unique tail set, flow dependence head set, anti-dependence
unique tail set, and anti-dependence unique head set. We
categorize these combinations as three cases starting from
simpler cases and leading upto the more complicated ones
of doubly nested non-perfect loops with non-uniform
dependences as follows:

CASE 1. There is only one kind of dependence which is
flow dependence

In this case, DCHI1 is flow dependence unique tail set
and DCH2 is flow dependence unique head set, as shown
in Fig. 2. Clearly the flow dependence unique head set
should be run after flow dependence unique tail set.
Therefore, the doubly nested loop in Fig. 1 can be

42

transformed as follows.

DCH?2

Flow Dep Head

—
DCH1L

Fig. 2. There are only Flow dependences

doall I = l], up

S A(ani; + cu, anis + ci2)) = . ..
enddo
doall I = I}, uy;
doall J = I3, u:
Sy ... = A(auirbyjrren, anirbyjrtcn)
enddo
enddo

CASE 2. there is only one kind of dependence which is
anti dependence
i

S
DCHY

Fig. 3. There are only Anti dependences

In this case, DCHI is anti dependence unique head set
and DCH2 is anti dependence unique tail set, as shown
in Fig. 3. Clearly the anti dependence unique head set
should be run after anti dependence unique tail set.
Therefore, the doubly nested loop in Fig. 1 can be
transformed as follows.

doall I = I, u;
doall J = I3, u:
Su: o = A(aniz+bayat+cr, anirbnjr+cn)
enddo
enddo
doall I = I;, uy

Journal of Contents Volume 1, Number 1, April 2005

Sx: Alaniy + cu, ani; + ci)) = . ..
enddo

CASE 3. there are both flow and anti dependences

\'-‘ o
DUHI

Fig. 4. There are both Flow and Anti dependences

In this case, we can divide the DCH inside the iteration
space (in this program model, it is DCH2.) and run in
the following order (anti dependence unique tail set) —>
DCH1 — (flow dependence unique head set). dix:, y:) =
0, which is (1 - @i)x2 - Buy2 - ¥ , will be used as the
dividing line.

The converted parallel code of doubly nested loop in Fig. 1 is
as follows:

doall I =1;, u;
doall J =15, u-
if (1 - @mxz- Boryz -) <0
S2; R A(a21ig + bzu'g + Ca21, A22iz + bzziz + C22)
endif
enddo
enddo
doall I=1;, uy
Si: A(ani;+ci, apij+cp))=. ..
enddo

doall I = l], Uy
doall J= lz, U
if ((1 - @)x2- Bayz- v21) >0
Sz‘. I A(a21i2 + bzu'g + Co1, dnis + bzzjz + sz)
endif
enddo
enddo

But, By variable renaming after copying, execution order
is DCH1 — (flow dependence unique head set) because
anti dependence unique sets can be fully executed
concurrently. So, in this case, CASE 3 is changed to
CASE L.

4. ENHANCED REGION PARTITIONING METHOD

The system of Diophantine equations and system of
linear inequalities can be derived as

200 + 4 =j; + 2+ 2

Enhanced Region Partitioning Method of Non-perfect nested Loops with Non-uniform Dependences 43

i1+5=j1

l,éi;ﬁu;,i;:b-l

L < ji = u b < o = u
Now we solve for j; and jz by setting i; = x and i» = y.

j/+2j3+ =2x + 4
j1+j3=x+5

j] = 8, jz =x-3
So we get DCHI which is

L =x=u py=1§-1
L =8 = uplhb =x-3 = w

The dependence vector is

di(x,y)=jz-i1=8-x
dix, y) = ja - iz = x - 3

For DCH2, set j;, = x and j> = x.

2 +4=x+2y +2
h+S5=x+y

i =12x+y-1
Ir=x+2y-5

DCH2 is
L = 1U2x+y-1=<u
I < X+y-5=u
12 < X < u
L = y = u:
o
\ b -
B
s e G
" "-’ \ \
REEEEN
4l R/ 4RATNAN

Fig. 5. Example of unique sets in iteration space

Fig. 5 shows the unique sets in the iteration space when
11 = 1, uy = 12, lz = 1, and Ur = 12.
The parallelized code is as following:

doall I =1, u;
doall J = max(/z, 6), uz
Sz L=AG+ 2+ 2,04))
enddo
enddo

doall I= l/, 1234
Si: AQi+d,i+5)=...
enddo
doall I =1}, u;
doall J = Iz,max(us, 5)
Sa: .. =Alaniiz + byja + ca1, anis + byjs + ¢2)
enddo
enddo

The parallelized code after variable renaming is as
following:

doall I = l], 113}
Si: AQi+4,i+5)=...
enddo
doall I = l1, uj
doall J = I, max(uz, 5) .
Sa: . .=A(aaiiz + bayjz + ca1, aniz + byj2 +)
enddo
enddo

5. CONCLUSIONS

This paper introduced unique sets oriented technique to
parallelize non-perfect nested loops with non-uniform
dependences. Current parallelizing compilers can't handle
this kind of loop, either leaving it to run sequentially, or
giving poor performance even when parallelized. The
research about non-uniform dependence has been restricted
and most of these techniques assume a perfect nested
loop model. This paper used the concept of Complete
Dependence Convex Hull, Unique Head and Tail Sets.
This paper addressed the issues of how to analyze
non-perfect nested loops and how to partition the iteration
space according to the information collected using unique
sets. And we proposed an enhanced region partitioning
method which divides the iteration space into minimum
parallel regions by using variable renaming. Our future
research work is to improve the other techniques for
higher dimensional nested loops and/or loops with
multiple dependences.

REFERENCES

[11J. Ju and V. Chaudhary, "Unique sets oriented
partitioning of nested loops with non-uniform
dependences,” in Proceedings of the International
Conference on Parallel Processing, pp. II145-11152,
1996.

[2] T. H. Tzen and L. M. Ni, "Dependence
uniformization: A loop parallelization tehnique,” IEEE
transactions on Parallel and Distributed Systems,
vol. 4, pp. 547-558, May 1993.

[3] M. Wolfe, "Loop skewing: The wavefront method

revisited,” International Journal of Parallel
Programming, pp. 279-293, Aug. 1986.

[4) U. Banerjee, Loop Transformations for
Restructuring compilers. Kiluwer Academic

Publishers, 1993.

44 ‘ Journal of Contents Volume 1, Number 1, April 2005

[51 M. E. Wolfe and M. S. Lam, "A loop transformation
theory and an algorithm to maximize parallelism,”
IEEE transactions on Parallel and Distributed
Systems, vol. 2, pp. 452-471, Oct 1991.

[6] M. J. Wolfe, Optimizing Supercompilers for
supercomputers. MIT Press, 1989.

[71 Z. Shen, Z. Li, and P. C. Yew, "An empirical study
on array subscripts and data dependencies," in
Proceedings of the International Conference on
Parallel Processing, pp. 11145-11152, 1989.

[8] S. Punyamurtula, V. Chaudhary, J. Ju, and S. Roy,
"Compile time partitioning of nested loop iteration
spaces with non-uniform dependences,” Journal of
Parallel Algorithms and Applications, October 1996.

[9] A. Zaafrani and M. Ito, "Parallel region execution of
loops with irregular dependences,” in Proceedings of
the International Conference on Parallel Processing,
pp. 1I--11 to 1I--19, 1994.

[10] U. Banerjee, Dependence Analysis for
Supercomputing. Kluwer Academic Publishers, 1988.

[11] M. Wolfe and C. W. Tseng, "The power test for
data dependence,” IEEE Trans. Parallel and
Distributed Systems, vol. 3, no. 5, pp. 591-601, Sep.
1992.

Sam-Jin Jeong

He received the B.S. in polymer
science from KyungBuk National
university, Korea in 1979, and the
MS. in computer science from
Indiana university, USA in 1987,
and also received Ph.D. in computer
science from ChungNam National
university, Korea in 2000. From 1988 to 1991, he was
a senior research staff at SamSung Electric Co. From
1992 to 1997, he was an assistant professor at
Haecheon University. Since then, he has been with
Cheonan University as a professor. His main research
interests include parallelizing compiler, parallel systems,
general compiler, and programming languages.

