양방향 데이터방송 서비스를 위한 캐러셀 관리자 설계

Design of a Carousel Manager for Data Broadcasting Services

강민구
한신대학교 정보통신학과
Min-Goo Kang(Kangmg@hs.ac.kr)

요약

기존의 아날로그 TV 방송 환경과 달리 디지털 방송에서는 상향채널(return channel)을 이용한 양방향 데이터 방송서비스를 통하여 다양한 부가 정보를 제공할 수 있다. 이러한 데이터 방송 서비스에서는 기존의 오디오/비디오 방송 프로그램 이외에 방송과 관련된 데이터 또는 방송과는 직접 관련이 없는 순수한 데이터를 제공하게 된다. 본 논문에서는 이러한 양방향 데이터 방송 서비스를 위해 데이터 방송 프로토콜인 데이터/객체 캐러셀(Carousel) 규격을 이용한 데이터 관리를 목적으로 하는 관리자의 구조를 제안하고, 설계함으로서 DTV용 컨텐츠 제작을 지원할 수 있다. 이러한 DTV용 컨텐츠 응용기술은 PID(패킷 ID)를 이용한 MPEG2-TS 데이터 방송에서 데이터 관리자를 이용하여 구현할 수 있다.

- 중심어 : | 양방향 데이터방송 | 데이터 캐러셀 | 객체 캐러셀 | 패킷 ID | MPEG2-TS |

Abstract

Various kinds of data broadcasting services can be offered using a return-channel in digital broadcasting TV compared to analog services. In these data broadcasting environments, several data(associated with TV broadcasting programs, or not) are provided to the TV audiences except for audio/video broadcasting data. In this paper, a structure of data manager for data/object carousel, based on data broadcasting protocols, was proposed for data broadcasting services using a return-channel, and were supported to the production technologies of DTV contents. These contents application techniques for DTV will be implemented with this data manager in MPEG2-TS data broadcasts using PID(Packet ID).

- Keyword : | Data Broadcasting | Data Carousel | Object Carousel | Packet ID | MPEG2-TS |

I. 서 론

디지털 TV 방송의 보급과 초고속 인터넷 기술개발의 급진적으로 양방향 서비스 기반이 구축되면서, 기존의 방송국에서 시청자에게 일방적인 서비스 제약가 각종 서비스를 양방향으로 제공이 가능토록 진전되었다. 기존의 TV가 양방향의 각종 서비스 제공이 가능한 인터넷 TV나 인터랙티브 TV 등의 형태로 진화되고 있다. 이러한 디지털 TV는 기존의 방송과는 다르게 단방향의 정보 전달뿐만 아니라 상향채널(return-
양방향 데이터방송 서비스를 위한 캐러셀 관리자 설계

channel)을 이용한 실시간 시청자 참여, TV전자상거래, 전자우편 등을 할 수 있으며, 게임, 콘텐츠 정보들의 다양한 방식을 제공하는 융합프로그램과 다양한 DTV (Digital TV)용 콘텐츠를 제공할 수 있는 방송서비스이다. 이러한 양방향 데이터 방송은 시청자에게 새로운 서비스를 제공하는 것으로 기존의 A/V 방송 프로그램 외에 방송과 관련된 정보와 방송과는 직접 관련이 없는 순수 데이터를 제공하게 되는 것이다.

따라서 일반 시청자는 DTV 방송을 통해 고화질, 다 채널 A/V 방송과 프로그램 안내정보 서비스(EPG), TV 프로그램 인판 서비스, 순수 데이터 서비스, 양방향 서비스로 분류되는 데이터 방송을 받아 볼 수 있다.

이러한 서비스를 위해서는 전송되는 데이터 방송에서 유용한 데이터 내역을 시청자가 볼 수 있도록 해야 한다. 이를 위해 본 논문은 유럽형 DTV 표준인 DVB (Digital Video Broadcasting)에 근거하여 데이터를 관리할 수 있도록 캐러셀 관리자의 구조를 기반으로 구현함으로서 다양한 디지털 TV용 양방향 데이터방송 서비스가 가능하게 하고자 한다[1].

그림 2는 디지털 TV용 수신기 모형으로 우선 튜너가 원하는 주파수를 선택하면 이 결과가 복잡기를 거쳐 하 나의 비트열인 MPEG2-TS (Transport Stream)를 추출하고 역다중화기(Demux)에서 앞서 묶어 놓은 MPEG2-TS에서 비디오·오디오 데이터 서비스 정보에 해당하는 비트 열을 분리한다. 이러한 각각의 비디오·오디오 데이터 등의 각각 분리되어 적합한 복호기를 거쳐 화면에 나타나거나 실제로 저장된다[1].

그림 2. DTV용 수신기 모델

그림 1. 디지털 양방향 방송 표준화 분석

II. 양방향 데이터방송 서비스 설계 연구

1. 디지털방송용 데이터 방송서비스 분석

[그림 1]은 디지털 방송의 양방향 서비스를 위한 표준화의 발전방향으로 미국방식과 유럽방식을 분석하였다. 또한 디지털 양방향 방송은 디지털 방송 및 음성 데이터와 함께 다양한 형태의 데이터 정보를 포함한다[1].

2. MPEG2-TS 분석

DTV에서는 MPEG2-TS를 방송표준 비트 열로 선택한다. MPEG2-TS는 MPEG표준에서 정하고 있는 비트 열 형식으로 비디오·오디오 데이터를 한 열에 묶어 넣고 다시 분리하는 것을 규정하고 있다.

MPEG2-TS는 188바이트의 고정 크기의 패킷들로 구성되어 있으며, 각 패킷에는 헤더가 있고 거기에 [그림 3]과 같이 패킷 식별자(Packet ID, PID)라고 불리는 번호가 붙는데, 이것이 바로 해당 패킷이 어떤 비트 열에 속하는지를 나타내는 표시하고 있다[2].

따라서 수신 단에서는 오디오, 비디오, 데이터들은 각 비트 열마다 할당된 PID별로 분류된다. 본 논문에서는 유럽방식인 DVB 샘플을 저장한 샘플 MPEG2-TS를 이용하여 분석한다[2].
3. 프로그램 특성 정보 분석

DTV에서 MPEG2-TS가 포함하고 있는 데이터들은 종류별로 역할을 채워주며, 여기에는 각각의 데이터에 해당하는 패킷 식별자를 알아내야 할 필요성이 생긴다. TS 규격에서는 전송될 데이터의 패킷 식별자 별로 전달하기 위한 특별한 데이터 형식을 별도로 규정하고 있는데, 이를 프로그램 특성 정보(Program Specific Information, PSI)라고 한다[2].

프로그램 연결표(Program Association Table, PAT), 프로그램 지도표(Program Map Table, PMT), 네트워크 정보표(Network Information Table, NIT), 조건부 접근표(Conditional Access Table, CAT)가 있다[2].

이중 프로그램 연결표와 프로그램 지도표가 TS에 포함된 데이터들에 패킷 식별자를 구별하고 전달하는데 사용되는 식별표가 있다. [그림 4]에 MPEG2-TS를 역량화 하여 데이터를 수출해 내는 절차를 간략히 나타내었다[3].

프로그램 지도식별 표에는 하나의 프로그램을 구성하는 영상, 음성, 사용자 데이터들의 패킷 식별자 목록을 수록하고 있으며, 그 자체도 유일한 패킷 식별자를 가지고 있어서 다른 데이터들과 구별된다[2].

MPEG2-TS에는 여러 프로그램들이 동시에 수록될 수 있으므로 수록된 프로그램과 일치하는 프로그램의 저장 식별 포수 또한 TS 내에 포함되어 있어야 한다. 이를 위해 표 [1]에 PID 값과 의미를 정리하였다[3].

표 1. PID 식별표

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000</td>
<td>Program Association Table</td>
</tr>
<tr>
<td>0x0001</td>
<td>Program Map Table</td>
</tr>
<tr>
<td>0x0002</td>
<td>Network Information Table</td>
</tr>
<tr>
<td>0x0004</td>
<td>Conditional Access Table</td>
</tr>
<tr>
<td>0x0009</td>
<td>Reserved</td>
</tr>
<tr>
<td>0x0010</td>
<td>May be assigned as network PID, Program_map_PID, or for other purposes</td>
</tr>
<tr>
<td>0x0015</td>
<td>Not allowed</td>
</tr>
</tbody>
</table>

NOTE: a transport packet with PID values 0x0000, 0x0001, and 0x0004 - 0x0014 are not allowed except for PCR.

4. 데이터방송용 DSM-CC 분석

DSM-CC(Digital Storage Media Command Control)는 짧은 암 네트워크상에서 애니메이션 서비스를 공급하기 위해 MPEG에서 제정한 규격이다.

[그림 5]와 같은 DSM-CC에서는 시스템 사이의 접속을 규정하고 있는데, 사용자와 시스템 사이의 접속을 사용자 간 접속(User-to-User), 사용자 시스템과 네트워크 시스템 사이의 접속을 사용자와 네트워크간 접속(User-to-Network)을 규정하고 있다. 데이터 방송과 관련되는 것은 데이터 캐리셀(Data Carousel), 객체 캐리셀(Object Carousel) 등이 있다[2].
데이터 캐러셀은 데이터 부분을 주기적으로 전송하는 방식이며, 캐시 캐러셀은 데이터 캐러셀을 통하여 DSM-CC 사용자간 접속 파일과 디렉토리의 계층적 구조를 주기적으로 전송하는 방식이다[3].

5. 데이터 캐러셀 분석

데이터 캐러셀을 위한 유럽의 데이터 방송 규정은 DVB 호환 방송 네트워크를 통해서 데이터 영역의 주기적인 전송에 대한 요구사항을 지원한다.

데이터 영역은 그 크기가 정해져 있으며, 데이터 캐러셀 로 부터 한 번에 전송, 추가, 삭제되어 갈 것이다. 영역들은 필요에 따라 여러 묶음으로 나뉘질 수 있고, 묶음들은 다른 묶음으로 또 다시 나뉘질 수 있다. 데이터 캐러셀은 MPEG-2의 DSM-CC에서 정의된 DSM-CC 데이터 캐러셀을 통해 전달되어 진다[4].

6. 객체 캐러셀 분석

방송 채널을 통해 클라이언트로 DSM-CC의 사용자간 접속용 객체를 전송한다.

어떻게 객체를 전송할 지 명시하는 대표적인 프로토콜로 BIP(Broadcast Inter-ORB Protocol)을 사용한다. 객체 캐러셀 명세는 플랫폼에 독립적이고 DSM-CC의 사용자간 접속명세와 CORBA에서 정의하는 ORB(Object Request Broker)와 호환 가능하다[4].

DSM-CC 객체 캐러셀은 디렉토리 객체, 파일 객체, 비트 열 객체들을 이용하여 서버에서 클라이언트로 구조화된 객체들 묶음의 전송을 쉽게 해준다. 실제로 구현한 객체(디렉토리와 컨텐츠)는 서버에 위치하며, 서버는 반복적으로 객체 캐러셀 프로토콜을 이용하여 MPEG-2 전송 비트 열에 객체를 삽입한다[4].

III. 데이터 방송용 캐러셀 관리자 구현 및 고찰

1. DSM-CC 캐러셀 관리자의 흐름도 구현

본 논문에서 구현한 DSM-CC 관리자는 [그림 7]과 같은 흐름도로 동작한다. 분석을 하기 전에 분석을 할 파일을 파일 메뉴에서 열기 버튼으로 관리자에 저장한다. 저장이 성공했으면, 분석 메뉴에 TS 분석을 통해 TS의 전체적인 분석을 한다[5].

![그림 6. DSM-CC 캐러셀 관리자 실행화면](image)

![그림 7. 관리자 흐름도 구성](image)

표 2. DSM-CC 관리자 구성과 기능

<table>
<thead>
<tr>
<th>DSM-CC 구성</th>
<th>기능</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPEG2-TS 저장/복사부</td>
<td>TS 파일로부터 각종 정보를 저장/복사</td>
</tr>
<tr>
<td>데이터 캐러셀 분석부</td>
<td>TS의 데이터 캐러셀분문을 DTV 규격을 사용하여 분석한 내용 표시</td>
</tr>
<tr>
<td>객채 캐러셀 분석부</td>
<td>TS의 객채 캐러셀분문을 DTV 규격을 사용하여 분석한 내용 표시</td>
</tr>
<tr>
<td>파일 생성부</td>
<td>최종적으로 DTV로 사용되는 파일들을 허드에 생성</td>
</tr>
<tr>
<td>비디오 재생부</td>
<td>데이터 관련이외에 비디오 데이터에 관한 내용을 생성한</td>
</tr>
</tbody>
</table>
2. MPEG-2 TS 저장영역 구현

MPEG-2 TS 저장부는 DVB 규격에 맞게 작성된 규격을 참고로 구현하였다. 유럽에서 제작된 사물의 TRP(Television Program)라는 각각별의 내용을 저장하는 방식이다.

기타요체에서는 동일한 방식의 목록 저장여부를 기록한 뒤에, 각각의 TV를 저장하는 방식을 저장하며, 만약 일치하지 않을 경우 저장을 하지 않게 된다.

이렇게 저장된 데이터들은 MPEG2-TS 규격에 맞게 각 데이터들을 분류하게 된다. [그림 8]은 각 데이터들에 대한 내용이다.

![그림 8. MPEG-2 TS 저장부 화면](image)

3. 데이터 캐시.Category 구현

![그림 9. 파일 호름도 분석](image)

이후 작성하는 캐시.Category는 메모리에 모든 내용을 참조하게 된다. 이는 실제 구현 목표인 디지털 셋톱박스에서는 실제 저장되는 대상이 몇/개로 구성되어 있기 때문이다. 추후 메모리가 아닌 하드디스크(HDD)를 저장하여 이러한 문제를 해결할 수도 있으나 속도의 문제가 발생하게 된다. 이러한 문제들을 고려해 관리자는 메모리에 모든 데이터 내용을 메모리에 적재하여 사용하고 있다.

![그림 10. TS 헤더분석 화면 구현](image)

4. 갱체 결과.Category 분석부 구현

본 논문에서는 제안한 캐시.Category 관리자에 의한 데이터 캐시.Category로부터 나온 데이터들을 갱체 결과.Category 분석부에서
양방향 데이터방송 서비스를 위한 캐러셀 관리자 설계

는 실체적으로 사용할 데이터들로 만들어낸다. BIOP 메시지를 각각 분석하여 각 데이터 캐러셀들이 디랙토리인지, 파일인지, 비트맵 등인지를 분석하게 된다.

![그림 11. 객체 캐러셀 분석부 구현](image)

5. 파일 생성부 구현 및 결과화면 고찰

![그림 12. 파일 생성 실행화면](image)

IV. 결론

본 논문에서는 DVB-MHP 방식의 양방향 DTV방송에서 데이터를 전송 프로토콜인 데이터 캐러셀과 객체 캐러셀을 관리할 수 있는 관리자를 제안하고 설계함으로서 양방향 DTV용 캐러셀 관리자를 PC상에서 구현 하였다. 향후 양방향 데이터 방송에서 데이터 관리에 대한 효과적인 방법과 메체별 양방향 전송을 위한 다양한 미들웨어 개발 모델들이 제시될 것이다. 따라서 본 논문에서 제안한 양방향 데이터 방송서비스를 위한 캐러셀 관리자를 제공하는 것은 DTV용 컨텐츠 제작에 더욱 효율적이고 효과적인 알고리즘과 다양한 시스템 개발에 기여할 것이다.

참고 문헌

[1] Digital Video Broadcasting(DVB), Implementation guidelines for Data Broadcasting (TR 101 202 V1.1.1)

저자 소개

강 민 구(Min-Goo Kang) 정회원

- 1986년 2월: 연세대학교 전자공학과(공학사)
- 1989년 2월: 연세대학교 전자공학과(공학석사)
- 1994년 2월: 연세대학교 전자공학과(공학박사)
- 1985년~1987년: 삼성전자 통신연구소(연구원)
- 1997년~1998년: 오사카대학 통신공학과(Post Doc.)
- 1994년~2000년: 호남대학교 정보통신학과(조교수)
- 2000년~현재: 한국대학교 정보통신학과(부교수)