요약
본 연구에서는 설명(loss of eyesight)의 원인 질병중 하나인 녹내장의 진행과 관련 등의 의료 정보제공을 목적으로 양방향 곡선 전개 방식을 이용하여 망막 영상에서 시신경 원판(optic disk)의 경계를 검출하는 방법을 제안한다. 정확한 경계 검출의 위하여 텍스처 합성(texture synthesis)기반의 이미지 인페인팅 방법으로 시신경 원판 위를 지나는 혈관을 제거하고 전처리 과정에서 발생하는 잡음제거와 경계의 보존을 위해 비등방성 확산 필터링(anisotropic diffusion filtering)을 채용한다. 혈관이 제거된 망막 영상에서 시신경 원판의 경계 검출은 양방향 곡선 방식으로 검출한다. 실험 결과에서, 제안한 알고리즘은 복잡한 망막영상에도 효과적으로 시신경 원판을 검출한다는 것을 보여준다.

Abstract
This paper describes a technique for detecting the boundary of the optic disk in digital image of the retina using inward and outward curve evolution. This paper offers medical information about glaucoma progresses. For accurate boundary detection, image inpainting based on texture synthesis removes blood vessels crossing the optic disk. For removing noises and preserving boundary of optic disk in image inpainting process, the anisotropic diffusion filtering is necessary. After pre-processing, the optic disk boundary is determined using inward and outward curve evolution. The experimental results show that the algorithm is effective for detection of optic disk boundary.

keyword : Glaucoma, Retina, Optic Disk, Inpainting, Anisotropic Filtering, Curve Evolution

1. 서 론
녹내장은 눈 안의 압력, 즉 안압이 높아져서 시신경이 손상을 받아 시각장애를 일으키는 병으로 백내장, 당뇨병성 망막증과 함께 전 세계적으로 설명의 3대 원인에 해당한다. 우리 눈 속에는 눈 일정한 양의 물(방수)
양방향 곡선 전개 방식을 이용한 망막영상에서의 시신경 원판 경계 검출

만들어지고 눈 밖으로 배출되어 일정한 압력이 유지되는 데 이러한 방식의 배출로 이미성이 생기면 안압이 오르게 되고 상승된 안압은 눈 기저의 신경 축삭돌기 (Optic-nerve Axon)들을 소실시켜 시각장애를 일으키 고 설명에 이를 수도 있다. 이런 시신경 축삭돌기들은 눈의 기저에 위치한 전지 2mm의 원형 구조로 가진 시 신경 원판(Optic disk)을 지닌다. 녹내장이 경과함에 따라 시신경 성유들의 위축과 시신경 원판의 모양과 색의 높도 변화가 뚜렷히 나타나며 이와 같은 변화는 수년 혹은 더 긴 시간에 걸쳐 진행된다. 시간 경과에 따른 시신 경 원판 경계의 모양 변화는 일정 진행 경과나 상황을 측정할 수 있는 중요한 자료가 되기 때문에 컴퓨터를 이용한 자동 추출의 필요성이 많이 요구되는 분야이다.

그림 1. 망막 영상

[그림 1] 영상은 Fundus Camera라는 블라 린 의학용으로 특별히 제작된 카메라로 활용한 영상이며 안과 의사 들이 눈의 기저와 망막의 상태를 검사할 때 혼히 사용한다. 시신경 원판은 [그림 1]에서 보는 바와 같이 원판 이 모이고 있는 가운데 밝은 원형 부분이다. 본 논문의 최종 목적은 정확한 시신경원판 경계 검출이며, 이를 위해 사진작업으로 망막영상에서 원판 부분을 제거하는 것입니다. 시신경 원판 경계 검출의 가장 큰 장애요인은 시신경 원판 위를 지나는 혈관들이다. 기존의 혈관제거 방법인 모델로지 필터링 방법은 혈관이 지나지 않는 시 신경 원판 경계에서도 블라리어 현상을 유발한다. 이런 문제 해결을 위해 지정된 영역만 제거하는 텍스처 변환 기반의 영상 인패턴 방법을 사용한다[1-7]. 인패턴성 처리 중 발생할 수 있는 잘못제거와 급주 성능을 높이기 위해 비동방성 확산 필터링 방식을 사용하고 관심 영역인 시신경 원판 경계는 초기곡선의 위치에 큰 제약 없이 특정 영역의 경계를 자동으로 추출이 가능한 양방향 곡선전개 방식을 적용한다[8][9].

II. 본론

1. 텍스처 기반의 영상 인패턴

원래 인패턴이란 용어는 예술 분야에서 취용된 미술 작품을 복원하기 위한 방법을 지칭하는 것이며 디지털영상처리에서 영상 인패턴은 오래된 영상이나 손상된 영상을 PC 기반으로 원래 모습으로 복원하는 기술을 말한다. 본 논문에서는 [그림 1]과 같은 복잡한 망막영상에서 시신경 원판 경계를 정확히 추출하기 위한 전처리 과정으로 영상 인패턴 방법을 적용하여 시신경 원판 위를 지나는 혈관들을 제거한다. 텍스처 기반의 영상 인패턴 과정은 다음과 같다[1].

우선 [그림 2]에서 사용된 기호들을 정의하면,

\[\Omega : \text{인패턴할 대상 영역} \]
\[\partial \Omega : \Omega \text{의 경계} \]
\[\phi : \partial \Omega \text{의 적외선 원영상 영역} \]
\[p : \phi \text{의 폭설} \]
\[q : \phi \text{의 폭설} \]
\[\Psi_{p} : p \text{를 중심으로 한 일정크기 표본} \]
\[\Psi_{q} : q \text{를 중심으로 한 일정크기 표본} \]

1) [그림 2]의 (a)와 같이 인패턴할 대상영역(\(\Omega \))을 지정한다. 대상영역의 설정은 영상의 막겨기보다는 특징을 이용하여 자동으로 정하거나 수작업으로 할 수 있다.
2) [그림 2]의 (b)처럼 인패턴할 영역과 원영역의 경계에서 인패턴 우선후가 가장 높은 폭설을 구하고 그 위치를 중심으로 일정 크기의 표본\((\Psi_{p}) \)을 선택한다.
3) [그림 2]의 (c)와 같이 원영역을 대상으로\(\Psi_{q} \)와 비교하여 최소 오차를 갖는 표본\((\Psi_{p}) \)를 검색한다.
4) [그림 2]의 (d)처럼 인패턴할 영역을\(\Psi_{p} \)로 채운다.

위와 같은 과정들은 인패턴 대상 영역의 경계에서
내부 방향으로 전체 대상 영역이 채워질 때까지 반복 수행된다.

\[C(p) = \sum_{q \in \Omega} \frac{C(q)}{\|\nabla \psi_q \|} \quad q \in \Omega \backslash \Omega^c \]
(2)

\[D(p) = \frac{\neg \nabla I_p^q \cdot n_p}{a} \]
(3)

[그림 3]에서 \(\nabla I_p^q \)은 등조선의 방향, \(n_p \)는 점 \(p \)에서 경계 \(\partial \Omega \)에 대하여 벡선벡터이며 \(a \)는 정규화 파라미터(Grey-level 영상에서 \(a \)는 255)이다.

1.2 표본 검색

\(\partial \Omega \)의 모든 점 \(p \)에서 우선순위가 결정되면 우선순위가 가장 높은 \(\psi_p \)을 찾아서 영역 \(\Phi \)에서 \(\psi_p \)와 가장 비슷한 \(\psi_q \)을 검색한다.

\[\psi_q = \arg \min_{\psi_q} d(\psi_p, \psi_q) \quad \forall \psi_q \in \Phi \]
(4)

여기서 두 표본 \(\psi_p, \psi_q \)의 거리 \(d(\psi_p, \psi_q) \)는 이 미 채워진 있는 픽셀들의 SSD(sum of squared differences)로 정의한다. 식 (4)에서 얻어진 \(\psi_q \)로 \(\psi_p \)에 대응하는 픽셀들을 채운다. (단 \(\psi_p \)에서 \(\Omega \)에 속하는 픽셀만 해당한다.)

2. 비등방성 확산 필터링

앞서 살펴본 인케인팅 과정은 가장 적합한 일정 크기의 표본을 선택하여 지정된 영역에 채워 나가므로 표본과 표본사이에 잡음이 발생한다. 이러한 잡음을 제거하기 위해 비등방성 확산 필터링을 수행한다. 비등방성 확산 필터링은 영상의 밝기 변화가 크게 일어나는 영역과 반대로 확산을 아주 작게 하거나 전혀 하지 않으므로 해이 부분을 보존하고 밝기 변화가 아주 적은 영역내의 경우 확산을 많이 하므로써 잡음이 영성의 일부에 해당하는 픽셀들의 영상을 처리함으로써, 잡음과 잡음이 큰 영역의 경우 확산을 적게 하거나 전혀 하지 않으므로 해이 부분을 보존하고 밝기 변화가 아주 적은 영역내의 경우 확산을 많이 하므로써 잡음이 영성의 일부에 해당하는 픽셀들의 영상을 처리함으로써.
수 있는 방식이다. 영상에 대한 비등방성 확산 방정식은 석 (5)과 같다[10].

\[
\frac{\partial I(x,y,t)}{\partial t} = \nabla \cdot (c(x,y,t) \nabla I) + c(x,y,t) \Delta I + \nabla c \cdot \nabla I \tag{5}
\]

석 (5)에서 \(I(x,y,t) \)는 공간상의 각 점에서 영상의 밝기 값을 나타내며, 확산 함수 \(c \)를 석 (6)과 같이 영상 밝기 값의 그라디언트 크기에 따라 값을 달리하는 함수로 사용한다[2].

\[
c(x,y,t) = g(\| \nabla G \ast I(x,y,t) \|) \tag{6}
\]

\(G \ast I \)는 원 영상 \(I \)를 가우시안 필터링한 것을 의미하며, 함수 \(g(\cdot) \)는 석 (7)과 같이 양수 값을 가지는 단조 감소형의 저수 함수나 석 (8)과 같은 함수를 이용하였다.

\[
g(\nabla I) = \exp(-1 \frac{\nabla I^2}{K}) \tag{7}
\]

\[
g(\nabla I) = \frac{1}{1 + \left(\frac{\| \nabla I \|}{K} \right)^2} \tag{8}
\]

\(K \)는 그라디언트 크기의 어느 값을 중심으로 확산을 많이 또는 적게 하는가를 결정하는 기준 상수 값이다. 석 (5)에 대한 이산식을 구하기 위해 한 화소에 이웃하는 네 화소에 대하여 석 (9)과 같은 유한 미분법[4]을 적용한다.

\[
I_{i,j}^{(t+1)} = I_{i,j}^{(t)} + \lambda \left[c_N \nabla I + c_S \nabla s + c_W \nabla w \right] \tag{9}
\]

여기서 \(I_{i,j}^{(t)} \)는 확산이 진행 중인 임의의 시점에에서의 현재의 변화된 영상 밝기 값을 나타내며, \(\lambda \)는 영상을 반복하여 확산시키고 나갈 때 확산 정도를 정의하

\[
\frac{I_{i,j}^{(t+1)} - I_{i,j}^{(t)}}{\Delta t} = \nabla \cdot (c(x,y,t) \nabla I) \tag{10}
\]

그림 4. 필터링 결과 (a)원영상, (b) 값을 포함 영상, (c)가 우식한 필터링 한 영상, (d)비등방성 확산 필터링 한 영상

그림 5. [그림4]의 각 영상에서 같은 위치에 해당하는 한 행에 대한 영상 밝기 값 비교

[그림 4]는 2차원 합성 영상에 대해 가우시안 필터링과 비등방성 필터링의 결과를 나타낸다. 가우시안 방식이 예지 부분에서 필터링 현상이 많이 나타남을 알 수 있다.

3. 레벨 세트 곡선 전개 방정식

\(N-1 \) 차원의 임의의 레벨의 곡면 \(\gamma \)가 시간에 따라 벡터 방향으로 국소에 의한 속도 \(F(K) \)로 움직일 때 이동하는 곡면들의 전체 집합 \(\gamma(t) \)에 대해 \(N \)차원 공간에서 Eulerian 수식 표현으로 나타낼 것이 레벨 세트 방정식이다[3]. 이로 레벨의 2차원 곡선 \(\gamma(t=0) \)의 시간에 따른 모양을 나타내기 위해 3차원 함수를 \(\Psi \)로 두면(즉, \(\Psi = 0 \)), 어떤 임의의 시각 \(t \)에서 곡선의 현재 진행된 모양은 \(\Psi = 0 \)가 되는 부분을 구하면 알 수 있다. 레벨 세트 0에 대한 \(\Psi \) 함수를 시간함수로 표현하면[8][9],

\[
\Psi(x,t) = 0
\] \(\tag{11} \)

가 된다. 여기서, 다음과 같은 가정을 둔다.

\[
I(x) = \begin{cases}
I_{in} & \text{if } x \in D \\
I_{out} & \text{if } x \notin D
\end{cases}
\] \(\tag{12} \)

여기서 \(D \)는 검출되던 물체의 영역을 나타내며, \(I_{in} \)와 \(I_{out} \)은 각각 그 물체 영역의 내부와 외부를 뜻한다. 원 영상에 변환된 영상 \(C(\cdot) \)를 적용한 후 백색 가능한 점을 추가하여 관측된 데이터를 \(\mathbf{g} \)라고 두면, 다음과 같은 수식으로 표현이 가능하다.

\[
\mathbf{g} = C(I) + \mathbf{N}
\] \(\tag{13} \)

단지 \(\mathbf{g} \)만을 알고 있는 상태에서는 원 영상 \(I \)의 물체를 정확히 분할하기 위해서는 본 모델에 일치하는 영역 \(D \)를 찾아야만 한다.

즉, 식 (14)에서처럼,

\[
\partial D_i = \{ x | \Psi(x,t) = 0 \}
\] \(\tag{14} \)

인 \(D \)의 경계를 찾아야한다. 곡선 \(\gamma(p,t) \)에 대하여 경계 \(D \)를 다시 표현하면,

\[
\partial D_i = \{ x | \Psi(p,t) = 0 \}
\]

와 같이 표현이 되며, 여기서 \(\mathbf{p} \)는 곡선에 대한 메개변수이다. 식 (15)을 임의의 시점 \(t \)에 대하여 표현을 하면

\[
\Psi_t + F \cdot \nabla \Psi = 0
\] \(\tag{16} \)

이 된다. \(F = \frac{\partial D}{\partial t} \)인 곡선의 속도 성분이다.

만약, 벡터 \(\mathbf{n} = -\frac{\nabla \Psi(x,t)}{|\nabla \Psi|} \) 방향으로의 속도 성분을 \(\mathbf{F} \)로 두면,

\[
\mathbf{F}(x,t) = \mathbf{s}(x,t) \cdot \mathbf{n}(x,t)
\] \(\tag{17} \)

이 되므로 다음과 같은 레벨 세트 곡선 전개 방정식을 구할 수 있게 된다.

\[
\Psi_t + \mathbf{s}(x,t) \cdot \nabla \Psi = 0
\] \(\tag{18} \)

본 논문에서는 속도 성분 \(\mathbf{s}(x,t) \)에 대하여 일반화 된 식 (19)를 제안한다.

\[
\Psi_t + (\mathbf{s}(x,t) + \Delta t \cdot \mathbf{K}) \cdot \nabla \Psi = 0
\] \(\tag{19} \)

여기서,

\[
\mathbf{s}(x,t) = -((C I_{in} - \mathbf{g})^2 - (C I_{out} - \mathbf{g})^2)
\]

\(\text{on } \partial D_i \)

\(\tag{20} \)

이다. 식 (19)에서 \(|\nabla \Psi_{i,j}| \)를 구하기 위해 다음과 같은 근사식을 사용하였다[11].

\[
|\nabla \Psi_{i,j}| = \{ \max(D_{+,x} \Psi_{i,j}, 0)^2 + \min(D_{-,x} \Psi_{i,j}, 0)^2 \}^{1/2}
\]

\[
+ \max(D_{+,y} \Psi_{i,j}, 0)^2 + \min(D_{-,y} \Psi_{i,j}, 0)^2 \}^{1/2}
\]

\(\tag{21} \)
D₁와 D₂ 그리고 D₃와 D₄는 각각 x방향과 y방향으로의 전방, 후방 미분치를 의미한다.
그리므로 최종적인 이산식은 다음과 같다.

\[\psi_{i+1,j} = \psi_i, (s(x,t) + \Delta t \cdot K) \cdot (\max(\psi_{i,j} - \psi_{i-1,j}, 0)^2 + \min(\psi_{i+1,j} - \psi_{i,j}, 0)^2 + \max(\psi_{i,j} - \psi_{i-1,j}, 0)^2 + \min(\psi_{i,j} - \psi_{i+1,j}, 0)^2)^{1/2} \]

(22)

III. 실험 및 결과

본 논문에서는 제안한 혼합재저 방법의 텍스처 병합 기반의 영상 인페인팅의 성능 평가를 위하여 기존의 모플로지 적용 방법과 비교하였다. [그림 6](a)는 원 방향 영상이며, (b)는 모플로지 필터링 방법으로 혼합을 제거한 모습이며, (c)는 텍스처 병합 기반의 영상 인페인팅 방법으로 표본 크기 9×9를 사용하여 혼합을 제거한 모습이다.

![그림 6. 혼합 제거 방법 (a)원영상, (b)모플로지 필터링, (c)텍스처 병합 기반의 영상 인페인팅](image)

(c)를 (b)와 비교해 보면 시험결과 원판 경계에서의 블러링 현상이 거의 없음을 시각적으로 확인할 수 있으며 단지 표본과 표본 사이에 미세한 차이로 인하여 색상이 생겼다. [그림 7]에서 텍스처 병합 기반의 영상 인페인팅 방법 후 참조 제거를 위하여 비등방성 화된 필터링을 수행한 결과와 그 결과에 따라서 양방향 국선 전체의 초기 국선과 양방향 국선 전체로 시험결과 원판의 영역을 검출한 결과를 보였다. 여기서 비등방성 화된 필터링의 화산 상수 K=0.08, 화산 속도 λ=0.25로 고정하고 화산반복에 따른 결과이다. 검출 영역은 양방향 국선 전체의 반복 횟수 70회에서 영역 검출이 완료된 결과이다. 비등방성 필터링 반복횟수 2회에서 가장 정확한 시험결과 원판 영역이 검출 되었다. [그림 8]에서 기존의 모플로지 필터링을 적용한 방법과 제안한 방법을 이용한 시험결과 원판의 추출 결과를 나타내었다. 이론적분가의 수작업 결과와 본 논문의 실험 결과의 정량적 비교를 위해 식 (23)을 사용하였다.

\[s = \frac{2N(R_1 \cap R_2)}{N(R_1) + N(R_2)} \]

(23)

\[N(R_1) = R_1 \text{ 영역에 포함된 화소 수} \]

\[N(R_2) = R_2 \text{ 영역에 포함된 화소 수} \]

<table>
<thead>
<tr>
<th>비등방성 확산 필터링 반복횟수</th>
<th>비등방성 확산 필터링 결과</th>
<th>초기국선</th>
<th>검출 영역</th>
</tr>
</thead>
<tbody>
<tr>
<td>2회</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4회</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6회</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8회</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10회</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20회</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![그림 7. 비등방성 확산 필터링에 따른 검출 영역](image)
s는 비교할 두 영역의 유사도를 나타내며 1에 근접할 수록 유사성이 높은 것으로 판단할 수 있다. 동일한 영상에 대해 모폴로지 방식을 이용하여 추출했을 경우 s 값이 0.87 정도로 나타났으나 인페인팅 방식의 경우 0.92 정도로 보다 향상한 결과를 나타낸 것을 확인할 수 있었다. 이 같은 결과는 기존의 방법에 비해 제안한 방식이 전처리 과정에서 발생하는 블러링 현상을 줄임으로써 더욱 정확한 경계 추출이 가능하기 때문에 판단된다.

<table>
<thead>
<tr>
<th>기존의 방법 (모폴로지 필터링)</th>
<th>조기 곡선</th>
<th>검출 영역</th>
</tr>
</thead>
<tbody>
<tr>
<td>제안된 방법</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

그림 8. 기존의 방법과 제안한 방법의 비교

IV. 결 론

영상에서 특징한 영역의 형태나 경계를 추출하기 위해 일반적으로 많이 사용하는 곡선전개 방식은 얕은 결과를 얻을 수 있으나 맑고 영상과 같은 복잡한 영상 등 경우에는 추출이 어렵다. 이 같은 이유는 [그림 1]과 같은 맑고 영상의 경우 시신경 왼편 주위를 복잡하게 지나는 혈관들 때문이다. 최근의 모폴로지 필터링을 적용하여 혈관 제거 효과를 이용함으로써 추출이 가능한 방식이 소개되었다. 하지만 모폴로지 방식은 혈관부위를 제거하면서 원영상의 시신경 왼편 영역의 경계 부분을 블러링 시켜버리기 때문에 정확한 추출을 보장하기 어렵다. 본 논문에서는 이러한 문제점을 해결하기 위해 영상 인페인팅 기법을 적용하였다. 가능한 끝에 있는 혈관 부분만을 제거하기 위해 텍스처 병합 기반의 인페인팅 방법을 적용한 추출 방법을 제안하였다. 본 연구에서는 전체 영상의 블러링 현상뿐만 아니라 시신경 왼편 경계의 블러링 현상을 줄이고자 텍스처 병합 기반의 영상 인페인팅과 비등방성 확산 필터링을 수행하였다. 본 논문에서 제안한 방식이 기존 모폴로지 방식을 적용했을 경우보다 다소 향상한 추출결과를 얻을 수 있었다. 향후 영상 인페인팅 처리속도의 향상과 검출되어진 영역의 효율적인 데이터베이스 구축에 관한 연구가 필요하다고 사료된다.

저자 소개

이상관(Sang-Kwan Lee) 정회원
- 1982년 2월 : 동아대학교 전자공학과(공학사)
- 1984년 2월 : 동아대학교 전자공학과(공학석사)
- 1996년 8월 : 동아대학교 전자공학과(공학박사)

- 1993년~2001년 : 지산대학 부교수
- 2001년~현재 : 부산가톨릭대학교 부교수
 < 관심분야 > : 지능시스템, 신경회로망, RFID시스템

김성곤(Seong-Kon Kim) 정회원
- 1983년 2월 : 경희대학교 전자공학과(공학사)
- 1985년 2월 : 경희대학교 전자공학과(공학석사)
- 2000년 2월 : 동아대학교 전자공학과(공학박사)

- 1992년~2000년 2월 : 지산대학 전자계산과 부교수
- 2000년~현재 : 부산가톨릭대학교 정보공학부 부교수
 < 관심분야 > : 영상처리, 컴퓨터비전, 의료영상해석