DOI QR코드

DOI QR Code

Growth of ZnO Film by an Ultrasonic Pyrolysis

초음파 열분해법를 이용한 ZnO 성장

  • Kim, Gil-Young (Department of Materials Engineering, Korea University, Thin Film Materials Research Center, Korea Institute of Science and Technology) ;
  • Jung, Yeon-Sik (Thin Film Materials Research Center, Korea Institute of Science and Technology) ;
  • Byun, Dong-Jin (Department of Materials Engineering, Korea University) ;
  • Choi, Won-Kook (Thin Film Materials Research Center, Korea Institute of Science and Technology)
  • 김길영 (고려대학교 재료공학과, 한국과학기술연구원 박막재료연구센터) ;
  • 정연식 (한국과학기술연구원 박막재료연구센터) ;
  • 변동진 (고려대학교 재료공학과) ;
  • 최원국 (한국과학기술연구원 박막재료연구센터)
  • Published : 2005.04.01

Abstract

ZnO was deposited on sapphire single crystal substrate by an ultrasonic pyrolysis of Zinc Acetate Dehydrate (ZAH) with carrying Ar gas. Through Thermogravimetry-Differential Scanning Calorimetry(TG-DSC), zinc acetate dihydrate was identified to be dissolved into ZnO above $380^{\circ}C$. ZnO deposited at $380-700^{\circ}C$ showed polycrystalline structures with ZnO (101) and ZnO (002) diffraction peaks like bulk ZnO in XRD, and from which c-axis strain ${\Sigma}Z=0.2\%$ and compressive biaxial stress$\sigma=-0.907\;GPa$ was obtained for the ZnO deposited $400^{\circ}C$. Scanning electron microscope revealed that microstructures of the ZnO were dependent on the deposition temperature. ZnO grown below temperature $600^{\circ}C$ were aggregate consisting of zinc acetate and ZnO particles shaped with nanoblades. On the other hand the grain of the ZnO deposited at $700^{\circ}C$ showed a distorted hexagonal shape and was composed of many ultrafine ZnO powers of 10-25 nm in size. The formation of these ulrafine nm scale ZnO powers was explained by the model of random nucleation mechanism. The optical property of the ZnO was analyzed by the photoluminescence (PL) measurement.

단결정 사파이어 (0001) 기판 위에 저가의 초산아연(Zinc Acetate Dehydrate; ZAH) 전구체를 이용하여 초음파 열분해법과 Ar 가스를 이용한 ZnO 박막을 성장시켰다. Thermogravimetry-Differential Scanning Calorimetry(TG-DSC) 초산아연의 열분해 과정을 조사하여 $380^{\circ}C$ 이상에서 ZnO로 분해되는 것을 확인하였다. $380-700^{\circ}C$에서 증착된 ZnO 박막은 모두 ZnO (002), (101) 결정면으로 부터의 회절피크를 보여주고 있었으며, $400^{\circ}C$ 박막의 경우 c-압축 스트레인 ${\Sigma}Z=0.2\%$, 압축 응력 $\sigma=-0.907\;GPa$이 작용하고 있음을 알 수 있었다. 전자 현미경을 이용한 미세 구조의 관찰을 통하여 $380-600^{\circ}C$에서는 초산아연과 ZnO 초미세 입자가 혼합된 aggregate 형태의 결정립을 형성하고 있었으며, nanoblade 형태의 미세구조를 보였다. 한편 $700^{\circ}C$에서 증착된 박막내의 결정립은 찌그러진 육방정계의 형태를 취하고 있으며, 10-25nm 정도의 부결정림 초미세 ZnO 입자로 이루어져 있음을 알 수 있었다. 초미세 입자의 형성을 임의 핵형성 기구(random nucleation mechanism)로 설명하였고, photoluminescence(PL) 측정을 통하여 광 특성을 조사하였다.

Keywords

References

  1. Y. H. Leung, ' Changing the Shape of ZnO Nanostructures by Controlling Zn Vapor Release: From Tetrapod to Bone-like Nanorods,' Chem. Phys. Lett., 385 155-59 (2004) https://doi.org/10.1016/j.cplett.2003.12.102
  2. X.-L. Hu, 'Sonochemical and Microwave-Assisted Synthesis of Linked Single-Crystalline ZnO Rods,' Mater. Chem, Phys., 88 421-26 (2004) https://doi.org/10.1016/j.matchemphys.2004.08.010
  3. Y. Dai, 'The Octa-Twin Tetraleg ZnO Nanostructures,' Solid State Commun., 126 629-33 (2003) https://doi.org/10.1016/S0038-1098(03)00277-1
  4. J. D. Albrecht, ' High Field Electron Transport Properties of Bulk ZnO,' J. Appl. Phys., 86 6864-67 (1998)
  5. Y. W. Zhu, ' Efficient Field Emission from ZnO Nanoneedle Arrays,' Appl. Phys. Lett., 83 144-46 (2003) https://doi.org/10.1063/1.1589166
  6. V. Craciun, ' Growth of ZnO Thin Films on GaAs by Pulsed Laser Deposition,' Thin Solid Films, 259 1-4 (1995) https://doi.org/10.1016/0040-6090(94)09479-9
  7. Q. P. Wang, ' Mechanisms of Green Emission from ZnO Films Prepared by RF Magnetron Sputtering,' Opt. Mater., 26 23-6 (2004) https://doi.org/10.1016/j.optmat.2003.12.005
  8. K. Iwata, ' ZnO Growth on Si by Radical Source MBE,' J. Crys. Growth, 214 50-4 (2000) https://doi.org/10.1016/S0022-0248(00)00057-9
  9. M.-C. Jeong, ' Comparative Study on the Growth Characteristics of ZnO Nanowires and Thin Films by Metalorganic Chemical Vapor Deposition (MOCVD),' J. Crys. Growth, 268 149-54 (2004) https://doi.org/10.1016/j.jcrysgro.2004.05.019
  10. R. Tena-Zaera, ' Study of the ZnO Crystal Growth by Vapour Transport Methods,' J. Crys. Growth, 270 711-21 (2004) https://doi.org/10.1016/j.jcrysgro.2004.06.053
  11. Y. Yang, ' Size Control of ZnO Nanoparticles via Thermal Decomposition of Zinc Acetate Coated on Organic Additives,' J. Crys. Growth, 263 447-53 (2004) https://doi.org/10.1016/j.jcrysgro.2003.12.010
  12. H. W. Suh, ' Growth and Properties ZnO Nanoblade and Nanoflower Prepared by Ultrasonic Pyrolysis,' J. Appl. Phys., 97 44305-10 (2005) https://doi.org/10.1063/1.1849825
  13. M. K. Puchert, ' Postdeposition Annealing of Radio Frequency Magnetron Sputtered ZnO Films,' J. Vac. Sci. Tech., A14 2220-30 (1996)
  14. S. Zhang, ' Characterization of Zinc Carbonate Hydroxides Synthesized by Precipitation from Zinc Acetate and Potassium Carbonate Solutions,' Mat. Res. Bull., 39 1939-48 (2004) https://doi.org/10.1016/j.materresbull.2004.05.023
  15. X. Zhao, ' Acetate-Derived ZnO Ultrafine Particles Synthesized by Spray Pyrolysis,' Powder Tech., 100 20-3 (1998) https://doi.org/10.1016/S0032-5910(98)00047-3
  16. E. S. Shim, ' Effect of the Variation of Film Thickness on the Structutal and Optical Properties of ZnO Thin Films Deposited on Sapphire Substrate Using PLD,' Appl. Surf. Sci., 186 474-76 (2002) https://doi.org/10.1016/S0169-4332(01)00746-2